Fluorescence studies of confinement in polymer films and nanocomposites: Glass transition temperature, plasticizer effects, and sensitivity to stress relaxation and local polarity

2007 ◽  
Vol 141 (1) ◽  
pp. 143-151 ◽  
Author(s):  
M. K. Mundra ◽  
C. J. Ellison ◽  
P. Rittigstein ◽  
J. M. Torkelson
2021 ◽  
Author(s):  
Jianqiao Wu ◽  
Liang Gao ◽  
Zhongkai Guo ◽  
Hao Zhang ◽  
Baoyan Zhang ◽  
...  

Epoxy vitrimers based on transesterification reactions (TERs) is a kind of recyclable thermosets which have been developed prosperously in recent years. However, the good thermal performance and the quick network...


2020 ◽  
Vol 59 (10) ◽  
pp. 755-763 ◽  
Author(s):  
Leslie Poh ◽  
Esmaeil Narimissa ◽  
Manfred H. Wagner

Abstract The data set of steady and transient shear data reported by Santangelo and Roland Journal of Rheology 45: 583–594, (2001) in the nonlinear range of shear rates of an unentangled polystyrene melt PS13K with a molar mass of 13.7 kDa is analysed by using the single integral constitutive equation approach developed by Narimissa and Wagner Journal of Rheology 64:129–140, (2020) for elongational and shear flow of Rouse melts. We compare model predictions with the steady-state, stress growth, and stress relaxation data after start-up shear flows. In characterising the linear-viscoelastic relaxation behaviour, we consider that in the vicinity of the glass transition temperature, Rouse modes and glassy modes are inseparable, and we model the terminal regime of PS13K by effective Rouse modes. Excellent agreement is achieved between model predictions and shear viscosity data, and good agreement with first normal stress coefficient data. In particular, the shear viscosity data of PS13K as well as of two polystyrene melts with M = 10.5 kDa and M = 9.8 kDa investigated by Stratton Macromolecules 5 (3): 304–310, (1972) agree quantitatively with the universal mastercurve predicted by Narimissa and Wagner for unentangled melts, and approach a scaling of Wi−1/2at sufficiently high Weissenberg numbers Wi. Some deviations between model predictions and data are seen for stress growth and stress relaxation of shear stress and first normal stress difference, which may be attributed to limitations of the experimental data, and may also indicate limitations of the model due to the complex interactions of Rouse modes and glassy modes in the vicinity of the glass transition temperature. Graphical abstract


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1342 ◽  
Author(s):  
John Sweeney ◽  
Paul Spencer ◽  
Karthik Nair ◽  
Phil Coates

This is a study of the modelling and prediction of strain recovery in a polylactide. Strain recovery near the glass transition temperature is the underlying mechanism for the shape memory in an amorphous polymer. The investigation is aimed at modelling such shape memory behaviour. A PLA-based copolymer is subjected to stress–strain, stress relaxation and strain recovery experiments at large strain at 60 °C just below its glass transition temperature. The material is 13% crystalline. Using published data on the mechanical properties of the crystals, finite element modelling was used to determine the effect of the crystal phase on the overall mechanical behaviour of the material, which was found to be significant. The finite element models were also used to relate the stress–strain results to the yield stress of the amorphous phase. This yield stress was found to possess strain rate dependence consistent with an Eyring process. Stress relaxation experiments were also interpreted in terms of the Eyring process, and a two-process Eyring-based model was defined that was capable of modelling strain recovery behaviour. This was essentially a model of the amorphous phase. It was shown to be capable of useful predictions of strain recovery.


Sign in / Sign up

Export Citation Format

Share Document