scholarly journals Modelling the Mechanical and Strain Recovery Behaviour of Partially Crystalline PLA

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1342 ◽  
Author(s):  
John Sweeney ◽  
Paul Spencer ◽  
Karthik Nair ◽  
Phil Coates

This is a study of the modelling and prediction of strain recovery in a polylactide. Strain recovery near the glass transition temperature is the underlying mechanism for the shape memory in an amorphous polymer. The investigation is aimed at modelling such shape memory behaviour. A PLA-based copolymer is subjected to stress–strain, stress relaxation and strain recovery experiments at large strain at 60 °C just below its glass transition temperature. The material is 13% crystalline. Using published data on the mechanical properties of the crystals, finite element modelling was used to determine the effect of the crystal phase on the overall mechanical behaviour of the material, which was found to be significant. The finite element models were also used to relate the stress–strain results to the yield stress of the amorphous phase. This yield stress was found to possess strain rate dependence consistent with an Eyring process. Stress relaxation experiments were also interpreted in terms of the Eyring process, and a two-process Eyring-based model was defined that was capable of modelling strain recovery behaviour. This was essentially a model of the amorphous phase. It was shown to be capable of useful predictions of strain recovery.

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Nilesh Tiwari ◽  
A. A. Shaikh

AbstractBuckling and vibration study of the shape memory polymer composites (SMPC) across the glass transition temperature under heterogeneous loading conditions are presented. Finite element analysis based on C° continuity equation through the higher order shear deformation theory (HSDT) is employed considering non linear Von Karman approach to estimate critical buckling and vibration for the temperature span from 273 to 373 K. Extensive numerical investigations are presented to understand the effect of temperature, boundary conditions, aspect ratio, fiber orientations, laminate stacking and modes of phenomenon on the buckling and vibration behavior of SMPC beam along with the validation and convergence study. Effect of thermal conditions, particularly in the glass transition region of the shape memory polymer, is considerable and presents cohesive relation between dynamic modulus properties with magnitude of critical buckling and vibration. Moreover, it has also been inferred that type of axial loading condition along with the corresponding boundary conditions significantly affect the buckling and vibration load across the glass transition region.


2021 ◽  
Author(s):  
Jianqiao Wu ◽  
Liang Gao ◽  
Zhongkai Guo ◽  
Hao Zhang ◽  
Baoyan Zhang ◽  
...  

Epoxy vitrimers based on transesterification reactions (TERs) is a kind of recyclable thermosets which have been developed prosperously in recent years. However, the good thermal performance and the quick network...


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2984
Author(s):  
Anna Smola-Dmochowska ◽  
Natalia Śmigiel-Gac ◽  
Bożena Kaczmarczyk ◽  
Michał Sobota ◽  
Henryk Janeczek ◽  
...  

The paper presents the formation and properties of biodegradable thermoplastic blends with triple-shape memory behavior, which were obtained by the blending and extrusion of poly(l-lactide-co-glycolide) and bioresorbable aliphatic oligoesters with side hydroxyl groups: oligo (butylene succinate-co-butylene citrate) and oligo(butylene citrate). Addition of the oligoesters to poly (l-lactide-co-glycolide) reduces the glass transition temperature (Tg) and also increases the flexibility and shape memory behavior of the final blends. Among the tested blends, materials containing less than 20 wt % of oligo (butylene succinate-co-butylene citrate) seem especially promising for biomedical applications as materials for manufacturing bioresorbable implants with high flexibility and relatively good mechanical properties. These blends show compatibility, exhibiting one glass transition temperature and macroscopically uniform physical properties.


2018 ◽  
Vol 29 (10) ◽  
pp. 2164-2176 ◽  
Author(s):  
R Abishera ◽  
R Velmurugan ◽  
KV Nagendra Gopal

Thermally activated shape memory polymers are typically programmed by initially heating the material above the glass transition temperature ( Tg), deforming to the desired shape, cooling below Tg, and unloading to fix the temporary shape. This process of deforming at high temperatures becomes a time-, labor-, and energy-expensive process while applying to large structures. Alternatively, materials with reversible plasticity shape memory property can be programmed at temperatures well below the glass transition temperature which offers several advantages over conventional programming. Here, the free, partial, and fully constrained recovery analysis of cold-programmed multi-walled carbon nanotube–reinforced epoxy nanocomposites is presented. The free recovery analysis involves heating the temporary shape above Tg without any constraints (zero stress), and for fully constrained recovery analysis, the temporary shape is held constant while heating. The partially constrained recovery behavior is studied by applying a constant stress of 10%, 25%, and 50% of the maximum recovery stress obtained from the completely constrained recovery analysis. The samples are also characterized for their thermal, morphological, and mechanical properties. A non-contact optical strain measurement method is used to measure the strains during cold-programming and shape recovery. The different recovery behaviors are analyzed by using a thermo-viscoelastic–viscoplastic model, and the predictions are compared with the experimental results.


2020 ◽  
Vol 59 (10) ◽  
pp. 755-763 ◽  
Author(s):  
Leslie Poh ◽  
Esmaeil Narimissa ◽  
Manfred H. Wagner

Abstract The data set of steady and transient shear data reported by Santangelo and Roland Journal of Rheology 45: 583–594, (2001) in the nonlinear range of shear rates of an unentangled polystyrene melt PS13K with a molar mass of 13.7 kDa is analysed by using the single integral constitutive equation approach developed by Narimissa and Wagner Journal of Rheology 64:129–140, (2020) for elongational and shear flow of Rouse melts. We compare model predictions with the steady-state, stress growth, and stress relaxation data after start-up shear flows. In characterising the linear-viscoelastic relaxation behaviour, we consider that in the vicinity of the glass transition temperature, Rouse modes and glassy modes are inseparable, and we model the terminal regime of PS13K by effective Rouse modes. Excellent agreement is achieved between model predictions and shear viscosity data, and good agreement with first normal stress coefficient data. In particular, the shear viscosity data of PS13K as well as of two polystyrene melts with M = 10.5 kDa and M = 9.8 kDa investigated by Stratton Macromolecules 5 (3): 304–310, (1972) agree quantitatively with the universal mastercurve predicted by Narimissa and Wagner for unentangled melts, and approach a scaling of Wi−1/2at sufficiently high Weissenberg numbers Wi. Some deviations between model predictions and data are seen for stress growth and stress relaxation of shear stress and first normal stress difference, which may be attributed to limitations of the experimental data, and may also indicate limitations of the model due to the complex interactions of Rouse modes and glassy modes in the vicinity of the glass transition temperature. Graphical abstract


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuzhan Li ◽  
Monojoy Goswami ◽  
Yuehong Zhang ◽  
Tuan Liu ◽  
Jinwen Zhang ◽  
...  

AbstractThe development of multi-stimuli-responsive shape memory polymers has received increasing attention because of its scientific and technological significance. In this work, epoxy elastomers with reversible crosslinks are synthesized by polymerizing an anthracene-functionalized epoxy monomer, a diepoxy comonomer, and a dicarboxylic acid curing agent. The synthesized elastomers exhibit active responses to both light and heat enabled by the incorporated anthracene groups. When exposed to 365 nm UV light, additional crosslinking points are created by the photo-induced dimerization of pendant anthracene groups. The formation of the crosslinking points increases modulus and glass transition temperature of the elastomers, allowing for the fixation of a temporary shape at room temperature. The temporary shape remains stable until an external heat stimulus is applied to trigger the scission of the dimerized anthracene, which reduces the modulus and glass transition temperature and allows the elastomers to recover their original shapes. The effects of external stimuli on the thermal and dynamic mechanical properties of the elastomers are investigated experimentally and are correlated with molecular dynamics simulations that reveal the changes of structure and dynamics of the anthracene molecules and flexible chains.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1148 ◽  
Author(s):  
Michael Giebler ◽  
Clemens Sperling ◽  
Simon Kaiser ◽  
Ivica Duretek ◽  
Sandra Schlögl

Epoxy-anhydride vitrimers are covalent adaptable networks, which undergo associative bond exchange reactions at elevated temperature. Their service temperature is influenced by the glass transition temperature (Tg) as well as the topology freezing transition temperature (Tv), at which the covalent bond exchange reactions become significantly fast. The present work highlights the design of high-Tg epoxy-anhydride vitrimers that comprise an efficient stress relaxation at elevated temperature. Networks are prepared by thermally curing aminoglycidyl monomers with glutaric anhydride in different stoichiometric ratios. The tertiary amine groups present in the structure of the aminoglycidyl derivatives not only accelerate the curing reaction but also catalyse the transesterification reaction above Tv, as shown in stress relaxation measurements. The topology rearrangements render the networks recyclable, which is demonstrated by reprocessing a grinded powder of the cured materials in a hot press. The epoxy-anhydride vitrimers are characterised by a high Tg (up to 140 °C) and an adequate storage modulus at 25 °C (~2.5 GPa), which makes them interesting candidates for structural applications operating at high service temperature.


Sign in / Sign up

Export Citation Format

Share Document