Computation of the Largest f-Invariant Set Contained in an Affine Variety

2021 ◽  
pp. 341-363
Keyword(s):  
2020 ◽  
Vol 65 (10) ◽  
pp. 4456-4463
Author(s):  
Claus Danielson ◽  
Karl Berntorp ◽  
Avishai Weiss ◽  
Stefano Di Cairano

Author(s):  
T. N. Palmer

A new law of physics is proposed, defined on the cosmological scale but with significant implications for the microscale. Motivated by nonlinear dynamical systems theory and black-hole thermodynamics, the Invariant Set Postulate proposes that cosmological states of physical reality belong to a non-computable fractal state-space geometry I , invariant under the action of some subordinate deterministic causal dynamics D I . An exploratory analysis is made of a possible causal realistic framework for quantum physics based on key properties of I . For example, sparseness is used to relate generic counterfactual states to points p ∉ I of unreality, thus providing a geometric basis for the essential contextuality of quantum physics and the role of the abstract Hilbert Space in quantum theory. Also, self-similarity, described in a symbolic setting, provides a possible realistic perspective on the essential role of complex numbers and quaternions in quantum theory. A new interpretation is given to the standard ‘mysteries’ of quantum theory: superposition, measurement, non-locality, emergence of classicality and so on. It is proposed that heterogeneities in the fractal geometry of I are manifestations of the phenomenon of gravity. Since quantum theory is inherently blind to the existence of such state-space geometries, the analysis here suggests that attempts to formulate unified theories of physics within a conventional quantum-theoretic framework are misguided, and that a successful quantum theory of gravity should unify the causal non-Euclidean geometry of space–time with the atemporal fractal geometry of state space. The task is not to make sense of the quantum axioms by heaping more structure, more definitions, more science fiction imagery on top of them, but to throw them away wholesale and start afresh. We should be relentless in asking ourselves: From what deep physical principles might we derive this exquisite structure? These principles should be crisp, they should be compelling. They should stir the soul. Chris Fuchs ( Gilder 2008 , p. 335)


1999 ◽  
Vol 19 (2) ◽  
pp. 523-534 ◽  
Author(s):  
DAVID MEIRI ◽  
YUVAL PERES

Let $A,B$ be two diagonal endomorphisms of the $d$-dimensional torus with corresponding eigenvalues relatively prime. We show that for any $A$-invariant ergodic measure $\mu$, there exists a projection onto a torus ${\mathbb T}^r$ of dimension $r\ge\dim\mu$, that maps $\mu$-almost every $B$-orbit to a uniformly distributed sequence in ${\mathbb T}^r$. As a corollary we obtain that the Hausdorff dimension of any bi-invariant measure, as well as any closed bi-invariant set, is an integer.


2013 ◽  
Vol 156 (2) ◽  
pp. 193-207 ◽  
Author(s):  
KIT-HO MAK ◽  
ALEXANDRU ZAHARESCU

AbstractLet V be an absolutely irreducible affine variety over $\mathbb{F}_p$. A Lehmer point on V is a point whose coordinates satisfy some prescribed congruence conditions, and a visible point is one whose coordinates are relatively prime. Asymptotic results for the number of Lehmer points and visible points on V are obtained, and the distribution of visible points into different congruence classes is investigated.


2005 ◽  
Vol 15 (02) ◽  
pp. 567-604 ◽  
Author(s):  
SHIHUA LI ◽  
YU-PING TIAN

In this paper, we develop a simple linear feedback controller, which employs only one of the states of the system, to stabilize the modified Chua's circuit to an invariant set which consists of its nontrivial equilibria. Moreover, we show for the first time that the closed loop modified Chua's circuit satisfies set stability which can be considered as a generalization of common Lyapunov stability of an equilibrium point. Simulation results are presented to verify our method.


2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Wenyuan Duan ◽  
Heyuan Wang ◽  
Meng Kan

The dynamic behavior of a chaotic system in the internal wave dynamics and the problem of the tracing and synchronization are investigated, and the numerical simulation is carried out in this paper. The globally exponentially attractive set and positive invariant set of the chaotic system are studied via constructing the positive definite and radial unbounded Lyapunov function. There are no equilibrium positions, periodic solutions, quasi-period motions, wandering recovering motions, and other chaotic attractors of the system out of the globally exponentially attractive set. Strange attractors can only locate in the globally exponentially attractive set. A feedback controller is designed for the chaotic system to realize the control of the unstable point. The second method of Lyapunov is used to discuss theoretically the rationality of the design of the controller. The driving-response synchronization method is used to realize the globally exponential synchronization. The numerical simulation is carried out by MATLAB software, and the simulation results show that the method is effective.


Sign in / Sign up

Export Citation Format

Share Document