DEVELOPMENT OF A REAL-TIME, REGIONAL COASTAL FLOOD WARNING SYSTEM FOR SOUTHWEST ENGLAND

Author(s):  
KIT STOKES ◽  
TIM POATE ◽  
GERD MASSELINK
ELKHA ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 113
Author(s):  
Hasbi Nur Prasetyo Wisudawan

Disaster occurrence in Indonesia needs attention and role from all parties including the community to reduce the risks.  Disaster mitigation is one of the ways to reduce the disaster risk through awareness, capacity building, and the development of physical facilities, for example by applying disaster mitigation technology (early warning system, EWS). EWS is one of the effective methods to minimize losses due to disasters by providing warning based on certain parameters for disasters which usually occur such as floods. This research promotes a real-time IoT-based EWS flood warning system (Flood Early Warning System, FEWS) using Arduino and Blynk as well as Global System for Mobile Communication network (GSM) as the communication medium. The steps for implementing FEWS system in real locations are also discussed in this paper. Parameters such as water level, temperature, and humidity as well as rain conditions that are read by the EWS sensor can be accessed in real-time by using android based Blynk application that has been created. The result of the measurement of average temperature, humidity, and water level were 28.6 oC, 63.7 %, and 54.5 cm. Based on this analysis, the parameters indicated that the water level is in normal condition and there are no signs indicating that there will be flooding in the 30 days observation.  Based on the data collected by the sensor, FEWS can report four conditions, namely Normal, Waspada Banjir (Advisory), Siaga Banjir (Watch), and Awas Banjir (Warning) that will be sent immediately to the Blynk FEWS application user that has been created.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1667 ◽  
Author(s):  
Hong T. Nguyen ◽  
Trung Q. Duong ◽  
Liem D. Nguyen ◽  
Tram Q.N. Vo ◽  
Nhat T. Tran ◽  
...  

Vu Gia-Thu Bon (VGTB) river basin is an area where flash flood and heavy flood events occur frequently, negatively impacting the local community and socio-economic development of Quang Nam Province. In recent years, structural and non–structural solutions have been implemented to mitigate damages due to floods. However, under the impact of climate change, natural disasters continue to happen unpredictably day by day. It is, therefore, necessary to develop a spatial decision support system for real-time flood warnings in the VGTB river basin, which will support in ensuring the area’s socio-economic development. The main purpose of this study is to develop an online flood warning system in real-time based on Internet-of-Things (IoT) technologies, GIS, telecommunications, and modeling (Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center’s River Analysis System (HEC–RAS)) in order to support the local community in the vulnerable downstream areas in the event of heavy rainfall upstream. The structure of the designed system consists of these following components: (1) real-time hydro-meteorological monitoring network, (2) IoT communication infrastructure (Global System for Mobile Communications (GSM), General Packet Radio Service (GPRS), wireless networks), (3) database management system (bio-physical, socio-economic, hydro-meteorological, and inundation), (4) simulating and predicting model (SWAT, HEC–RAS), (5) automated simulating and predicting module, (6) flood warning module via short message service (SMS), (7) WebGIS, application for providing and managing hydro-meteorological and inundation data, and (8) users (citizens and government officers). The entire operating processes of the flood warning system (i.e., hydro-meteorological data collecting, transferring, updating, processing, running SWAT and HEC–RAS, visualizing) are automated. A complete flood warning system for the VGTB river basin has been developed as an outcome of this study, which enables the prediction of flood events 5 h in advance and with high accuracy of 80%.


Author(s):  
Nova Ahmed ◽  
Md. Sirajul Islam ◽  
Sifat Kalam ◽  
Farzana Islam ◽  
Nabila Chowdhury ◽  
...  

Background: The North-Eastern part of Bangladesh is suffering from flash flood very frequently, causing colossal damage to life and properties, especially the vast croplands. A distributed sensing system can monitor the water level on a continuous basis to warn people near the riverbank beforehand and reduce the damage largely. However, the required communication infrastructure is not available in most of the remote rural areas in a developing country like Bangladesh. Objective: This study intends to develop a low-cost sensor based warning system, customizing to the Bangladesh context. Method: The system utilizes a low-cost ultrasound based sensor device, a lightweight mobile phone based server, low-cost IoT sensing nodes, and a central server for continuous monitoring of river stage data along with the provision of storage and long-term data analytics. Results: A flash flood warning system developed afterward with the sensors, mobile-based server, and appropriate webbased interfaces. The device was tested for some environmental conditions in the lab and deployed it later in the outdoor conditions for short-term periods. Conclusion: Overall, the warning system performed well in the lab as well as the outdoor environment, with the ability to detect water level at reasonable accuracy and transmit data to the server in real time. Some minor shortcomings still noted with the scope for improvements, which are in the way to improve further.


Author(s):  
Liem D. Nguyen ◽  
Hong T. Nguyen ◽  
Phuong D. N. Dang ◽  
Trung Q. Duong ◽  
Loi K. Nguyen

Abstract This paper presents an interdisciplinary approach, along with Vietnam's legal frameworks, to design an automatic hydro-meteorological (HM) observation network for a real-time flood warning system in Vu Gia-Thu Bon (VGTB) river basin, Vietnam. The automatic HM monitoring network consists of weather-proof enclosures containing data loggers, rechargeable batteries, sensors for air temperature, air humidity, solar radiation, wind speed, water level with attached solar panels and mounted upon masts located at fixed ground stations. A total of 20 meteorological stations and five hydrological stations have been built in VGTB river basin. To capture changes in weather and stream flow in the basin, the 5-minute and half-hour recording frequency options were set for meteorological and hydrological variables, respectively. All HM data was transmitted every 30 minutes to the data server at the data processing centre via Global System for Mobile Communications (GSM)/General Packet Radio Service (GPRS) network. These data were then input into hydrological-hydraulic models for inundation simulation in the basin. The results showed that the performance of flood simulation at hourly time step has significantly improved during flood events in September and November 2015. Overall, near-real-time HM data recording from automatic monitoring network proved beneficial for an flood early warning system.


2021 ◽  
Vol 7 (4) ◽  
pp. 747-762
Author(s):  
Tran Kim Chau ◽  
Nguyen Tien Thanh ◽  
Nguyen The Toan

In recent years, losses and damages from flash floods have been steadily increasing worldwide as well as in Vietnam, due to physical factors, human activities, especially under a changing climate. This is a hotspot issue which requires immediate response from scientists and policy-makers to monitor and mitigate the negative impacts of flash floods. This study presents a way to reduce losses through increasing the accuracy of real-time flash flood warning systems in Vietnam, a case study developed for Ha Giang province where the topography is relatively complex with severe flash floods observed. The objective of this paper is to generate the real-time flash flood system based on bankfull discharge threshold. To do this, HEC-HMS model is applied to calibrate and validate observer inflow to the reservoir with nine automatic rain gauges installed. More importantly, on the basic of measured discharge at 35 locations from the fieldtrips, an empirical equation constructed is to identify the bankful discharge values. It bases on the relationship between basin characteristics of river length, basin area and bankfull discharge. The results indicate an effective approach to determine bankfull threshold with the established-empirical equation. On the scale of a small basin, it depicts the consistency of flood status and warning time with the reality. Doi: 10.28991/cej-2021-03091687 Full Text: PDF


2018 ◽  
Author(s):  
Sebastiano Rusca ◽  
Juan Pablo Carbajal

We present a catchment specific emulator based onnon-linear shallow water equations to be used forearly flood warning system in real time.


2020 ◽  
Vol 4 ◽  
pp. 96-109
Author(s):  
A.V. Romanov ◽  
◽  
M.V. Yachmenova ◽  

Based on the example of flood warning data provided by EFAS for the territory of Northwestern Administration for Hydrometeorology and Environmental Monitoring in 2018-2020, the structure of the systematized issues of the EFAS portal is analyzed. The issues determine a feedback for the year-round monitoring of the accuracy of flood forecasting using the LISFLOOD base model, as well as its calibration. Several most important feedback sections are highlighted, that allow improving significantly a procedure for the quantitative and qualitative differentiated assessment of short- and medium-range flood forecasts. Using the results of the numerical analysis, a general description of the EFAS flood warning system quality and the prospects for the participation of the Russian Federation in it are given. Keywords: flooding, hydrological forecasts, forecast lead time, feedback, forecast accuracy


Sign in / Sign up

Export Citation Format

Share Document