bankfull discharge
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 20)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 14 (3-4) ◽  
pp. 39-46
Author(s):  
Tamás Bartyik ◽  
György Sipos ◽  
Dávid Filyó ◽  
Tímea Kiss ◽  
Petru Urdea ◽  
...  

Abstract River Maros/Mureş has one of the largest alluvial fans in the Carpathian Basin. On the surface of the fan several very wide, braided channels can be identified, resembling increased discharges during the Late Glacial. In our study we investigated the activity period of the largest channel of them, formed under a bankfull discharge three times higher than present day values. Previous investigations dated the formation of the palaeochannel to the very end of the Pleistocene by dating a point bar series upstream of the selected site. Our aim was to obtain further data on the activity period of the channel and to investigate temporal relationships between maximum palaeodischarges, deglaciation phases on the upland catchment and climatic amelioration during the Late Pleistocene. The age of sediment samples was determined by optically stimulated luminescence (OSL). The investigation of the luminescence properties of the quartz extracts also enabled the assessment of sediment delivery dynamics in comparison to other palaeochannels on the alluvial fan. OSL age results suggest that the activity of the channel is roughly coincident with, but slightly older than the previously determined ages, meaning that the main channel forming period started at 13.50±0.94 ka and must have ended by 8.64±0.82 ka. This period cannot directly be related to the major phases of glacier retreat on the upland catchments, and in terms of other high discharge channels only the activity of one overlaps with a major deglaciation phase at ~17-18 ka. Based on these, high palaeodischarges can be rather related to increased Late Glacial runoff, resulted by increasing precipitation and scarce vegetation cover on the catchment. Meanwhile, the quartz luminescence sensitivity of the investigated channel refers to fast sediment delivery from upland subcatchments. Therefore, the retreat of glaciers could affect alluvial processes on the lowland by increasing sediment availability, which contributed to the development of large braided palaeochannels.


2021 ◽  
Vol 13 (14) ◽  
pp. 2650
Author(s):  
Dan Li ◽  
Ge Wang ◽  
Chao Qin ◽  
Baosheng Wu

River discharge and width, as essential hydraulic variables and hydrological data, play a vital role in influencing the water cycle, driving the resulting river topography and supporting ecological functioning. Insights into bankfull river discharge and bankfull width at fine spatial resolutions are essential. In this study, 10-m Sentinel-2 multispectral instrument (MSI) imagery and digital elevation model (DEM) data, as well as in situ discharge and sediment data, are fused to extract bankfull river widths on the upper Yellow River. Using in situ cross-section morphology data and flood frequency estimations to calculate the bankfull discharge of 22 hydrological stations, the one-to-one correspondence relationship between the bankfull discharge data and the image cover data was determined. The machine learning (ML) method is used to extract water bodies from the Sentinel-2 images in the Google Earth Engine (GEE). The mean overall accuracy was above 0.87, and the mean kappa value was above 0.75. The research results show that (1) for rivers with high suspended sediment concentrations, the water quality index (SRMIR-Red) constitutes a higher contribution; the infrared band performs better in areas with greater amounts of vegetation coverage; and for rivers in general, the water indices perform best. (2) The effective river width of the extracted connected rivers is 30 m, which is 3 times the image resolution. The R2, root mean square error (RMSE), and mean bias error (MBE) of the estimated river width values are 0.991, 7.455 m, and −0.232 m, respectively. (3) The average river widths of the single-thread sections show linear increases along the main stream, and the R2 value is 0.801. The river width has a power function relationship with bankfull discharge and the contributing area, i.e., the downstream hydraulic geometry, with R2 values of 0.782 and 0.630, respectively. More importantly, the extracted river widths provide basic data to analyze the spatial distribution of bankfull widths along river networks and other applications in hydrology, fluvial geomorphology, and stream ecology.


Author(s):  
Zhuoyuan Yang ◽  
Junqiang Xia ◽  
Meirong Zhou ◽  
Shanshan Deng ◽  
Zenghui Wang ◽  
...  

2021 ◽  
Vol 52 (2) ◽  
Author(s):  
Ciro Apollonio ◽  
Andrea Petroselli ◽  
Paolo Cornelini ◽  
Vito Manzari ◽  
Federico Preti ◽  
...  

Bankfull discharge estimation is a crucial step in river basin management. Such evaluation can be carried out using hydrological and hydraulic modelling to estimate flow-depths, flow velocities and flood prone areas related to a specific return period. However, different methodological approaches are described in the scientific literature. Such approaches are typically based either on the assumption that the bankfull discharge corresponds to a narrow range of return periods, or on the correlation to the river geomorphological or local descriptors, such as vegetation. In this study, we used high-resolution topographic data and a combined hydrological-hydraulic modelling approach in order to estimate bankfull discharge in the ungauged basin of Rio Torbido River (Central Italy). The field survey of plant species made it possible to investigate the link between the riparian areas and the bankfull discharge. Our results were in line with previous studies and showed a promising agreement between the results of the hydraulic modelling and the plant species present in the investigated river cross sections. The plant species position could be indeed used for a preliminary delineation of the riparian areas to be verified more deeply with the hydrological-hydraulic approach.


2021 ◽  
Vol 7 (4) ◽  
pp. 747-762
Author(s):  
Tran Kim Chau ◽  
Nguyen Tien Thanh ◽  
Nguyen The Toan

In recent years, losses and damages from flash floods have been steadily increasing worldwide as well as in Vietnam, due to physical factors, human activities, especially under a changing climate. This is a hotspot issue which requires immediate response from scientists and policy-makers to monitor and mitigate the negative impacts of flash floods. This study presents a way to reduce losses through increasing the accuracy of real-time flash flood warning systems in Vietnam, a case study developed for Ha Giang province where the topography is relatively complex with severe flash floods observed. The objective of this paper is to generate the real-time flash flood system based on bankfull discharge threshold. To do this, HEC-HMS model is applied to calibrate and validate observer inflow to the reservoir with nine automatic rain gauges installed. More importantly, on the basic of measured discharge at 35 locations from the fieldtrips, an empirical equation constructed is to identify the bankful discharge values. It bases on the relationship between basin characteristics of river length, basin area and bankfull discharge. The results indicate an effective approach to determine bankfull threshold with the established-empirical equation. On the scale of a small basin, it depicts the consistency of flood status and warning time with the reality. Doi: 10.28991/cej-2021-03091687 Full Text: PDF


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 554
Author(s):  
Woong Hee Lee ◽  
Heung Sik Choi ◽  
Dongwoo Lee ◽  
Byungwoong Choi

The stream flow generation method is necessary for predicting yearly bed change at an ungauged stream in Monsoon region where there is no hydrologic and hydraulic information. This study developed the stream flow generation method of daily mean flow for each month over a year for bed change simulation at an ungauged stream. The hydraulic geometries of cross-sections and the corresponding bankfull indicators of the Byeongseong river of 4 km reach were analyzed to estimate the bankfull discharge. The estimated bankfull discharge of the target reach was 77.50 m3/s, and the total annual discharge estimated 3720 m3/s through the correlation equation with the bankfull discharge. The measured total annual discharge of the Byeongseong river was 3887.30 m3/s, which is greater by 167.30 m3/s of 4.3% relative error. The volume and bed changes over a year by the Center for Computational Hydroscience and Engineering Two-Dimension (CCHE2D) model simulated using the measured discharge during 2013 and 2014 coincided with the surveyed in the same period. Estimated total annual discharge was used for the scenarios of stream flow generation. The generated stream flow using the flow apportioned to each month on the basis of the flow percentage in an adjacent stream simulated the river bed most appropriately. The generated stream flow using the flow based on the monthly rainfall percentage of the rainfall station in the target stream basin also simulated river bed well, which is confirmed as an alternative. Quantitatively, the root mean square error (RMSE), mean bias error (MBE), and mean absolute percentage error (MAPE) in-depth change of thalweg between the measured and the simulated were found to be 0.25 m, 0.04 m, and 0.44%, respectively. The result of the simulated cross-sectional river bed change for target reach coincided well with the surveyed. The proposed method is highly applicable to generate the stream flow for analyzing the yearly bed change at an ungauged stream in Monsoon region.


Author(s):  

Based on the analysis of a large volume of data of hydrological regime observations, as well as of field hydro/morphological studies, it is shown that, due to the ambiguity of the definitions of certain provisions of the Water Code of the Russian Federation, related to the establishment of the planned position of the coastline (boundary) of the watercourse, in some cases the implementation of these provisions is practically impracticable. To take into account the morphological features of river channels in determining the boundary of a watercourse, the bankfull discharge is illustrated, the use of the concept of “coastal edge” is justified, and recommendations are given on methods for its establishment for each of the hydro/morphological types of river channels and types of channel process. Recommendations are formulated for determining the frequency of updating the position of the coastline in areas with coastal deformations.


Sign in / Sign up

Export Citation Format

Share Document