Cantor Set and Its Applications

Keyword(s):  
2017 ◽  
Vol 28 (10) ◽  
pp. 1750073 ◽  
Author(s):  
Thierry Giordano ◽  
Daniel Gonçalves ◽  
Charles Starling

Let [Formula: see text] and [Formula: see text] be open subsets of the Cantor set with nonempty disjoint complements, and let [Formula: see text] be a homeomorphism with dense orbits. Building on the ideas of Herman, Putnam and Skau, we show that the partial action induced by [Formula: see text] can be realized as the Vershik map on an ordered Bratteli diagram, and that any two such diagrams are equivalent.


Author(s):  
Simon Baker

Abstract A well-known theorem due to Koksma states that for Lebesgue almost every $x>1$ the sequence $(x^n)_{n=1}^{\infty }$ is uniformly distributed modulo one. In this paper, we give sufficient conditions for an analogue of this theorem to hold for a self-similar measure. Our approach applies more generally to sequences of the form $(f_{n}(x))_{n=1}^{\infty }$ where $(f_n)_{n=1}^{\infty }$ is a sequence of sufficiently smooth real-valued functions satisfying some nonlinearity conditions. As a corollary of our main result, we show that if $C$ is equal to the middle 3rd Cantor set and $t\geq 1$, then with respect to the natural measure on $C+t,$ for almost every $x$, the sequence $(x^n)_{n=1}^{\infty }$ is uniformly distributed modulo one.


2004 ◽  
Vol 04 (01) ◽  
pp. 63-76 ◽  
Author(s):  
OLIVER JENKINSON

Given a non-empty finite subset A of the natural numbers, let EA denote the set of irrationals x∈[0,1] whose continued fraction digits lie in A. In general, EA is a Cantor set whose Hausdorff dimension dim (EA) is between 0 and 1. It is shown that the set [Formula: see text] intersects [0,1/2] densely. We then describe a method for accurately computing dimensions dim (EA), and employ it to investigate numerically the way in which [Formula: see text] intersects [1/2,1]. These computations tend to support the conjecture, first formulated independently by Hensley, and by Mauldin & Urbański, that [Formula: see text] is dense in [0,1]. In the important special case A={1,2}, we use our computational method to give an accurate approximation of dim (E{1,2}), improving on the one given in [18].


2019 ◽  
Vol 2019 (746) ◽  
pp. 149-170
Author(s):  
Pekka Pankka ◽  
Juan Souto

Abstract We prove that Kleinian groups whose limit sets are Cantor sets of Hausdorff dimension < 1 are free. On the other hand we construct for any ε > 0 an example of a non-free purely hyperbolic Kleinian group whose limit set is a Cantor set of Hausdorff dimension < 1 + ε.


2008 ◽  
Vol 28 (5) ◽  
pp. 1509-1531 ◽  
Author(s):  
THIERRY GIORDANO ◽  
HIROKI MATUI ◽  
IAN F. PUTNAM ◽  
CHRISTIAN F. SKAU

AbstractWe prove a result about extension of a minimal AF-equivalence relation R on the Cantor set X, the extension being ‘small’ in the sense that we modify R on a thin closed subset Y of X. We show that the resulting extended equivalence relation S is orbit equivalent to the original R, and so, in particular, S is affable. Even in the simplest case—when Y is a finite set—this result is highly non-trivial. The result itself—called the absorption theorem—is a powerful and crucial tool for the study of the orbit structure of minimal ℤn-actions on the Cantor set, see Remark 4.8. The absorption theorem is a significant generalization of the main theorem proved in Giordano et al [Affable equivalence relations and orbit structure of Cantor dynamical systems. Ergod. Th. & Dynam. Sys.24 (2004), 441–475] . However, we shall need a few key results from the above paper in order to prove the absorption theorem.


1997 ◽  
Vol 70 (1) ◽  
pp. 57 ◽  
Author(s):  
Melissa Richey
Keyword(s):  

2018 ◽  
Vol 29 (10) ◽  
pp. 1850098 ◽  
Author(s):  
R. F. S. Andrade ◽  
A. M. C. Souza

Properties of one-dimensional discrete-time quantum walks (DTQWs) are sensitive to the presence of inhomogeneities in the substrate, which can be generated by defining position-dependent coin operators. Deterministic aperiodic sequences of two or more symbols provide ideal environments where these properties can be explored in a controlled way. Based on an exhaustive numerical study, this work discusses a two-coin model resulting from the construction rules that lead to the usual fractal Cantor set. Although the fraction of the less frequent coin [Formula: see text] as the size of the chain is increased, it leaves peculiar properties in the walker dynamics. They are characterized by the wave function, from which results for the probability distribution and its variance, as well as the entanglement entropy, were obtained. A number of results for different choices of the two coins are presented. The entanglement entropy has shown to be very sensitive to uncovering subtle quantum effects present in the model.


1989 ◽  
Vol 39 (11) ◽  
pp. 6018-6021 ◽  
Author(s):  
W. D. Heiss ◽  
W.-H. Steeb
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document