A VECTOR FIELD MODEL OF A SADDLE-NODE HOPF BIFURCATION WITH GLOBAL REINJECTION

EQUADIFF 2003 ◽  
2005 ◽  
Author(s):  
BART OLDEMAN ◽  
BERND KRAUSKOPF
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Ding Fang ◽  
Yongxin Zhang ◽  
Wendi Wang

An SIS propagation model with the nonlinear rewiring rate on an adaptive network is considered. It is found by bifurcation analysis that the model has the complex behaviors which include the transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation, and Bogdanov–Takens bifurcation. Especially, a bifurcation curve with “S” shape emerges due to the nonlinear rewiring rate, which leads to multiple equilibria and twice saddle-node bifurcations. Numerical simulations show that the model admits a homoclinic bifurcation and a saddle-node bifurcation of the limit cycle.


2015 ◽  
Vol 26 (10) ◽  
pp. 1550111 ◽  
Author(s):  
Wenhuan Ai ◽  
Zhongke Shi ◽  
Dawei Liu

A new bifurcation analysis method for analyzing and predicting the complex nonlinear traffic phenomena based on the macroscopic traffic flow model is presented in this paper. This method makes use of variable substitution to transform a traditional traffic flow model into a new model which is suitable for the stability analysis. Although the substitution seems to be simple, it can extend the range of the variable to infinity and build a relationship between the traffic congestion and the unstable system in the phase plane. So the problem of traffic flow could be converted into that of system stability. The analysis identifies the types and stabilities of the equilibrium solutions of the new model and gives the overall distribution structure of the nearby equilibrium solutions in the phase plane. Then we deduce the existence conditions of the models Hopf bifurcation and saddle-node bifurcation and find some bifurcations such as Hopf bifurcation, saddle-node bifurcation, Limit Point bifurcation of cycles and Bogdanov–Takens bifurcation. Furthermore, the Hopf bifurcation and saddle-node bifurcation are selected as the starting point of density temporal evolution and it will be helpful for improving our understanding of stop-and-go wave and local cluster effects observed in the free-way traffic.


2011 ◽  
Vol 25 (29) ◽  
pp. 3977-3986 ◽  
Author(s):  
HUAGUANG GU ◽  
HUIMIN ZHANG ◽  
CHUNLING WEI ◽  
MINGHAO YANG ◽  
ZHIQIANG LIU ◽  
...  

Coherence resonance at a saddle-node bifurcation point and the corresponding stochastic firing patterns are simulated in a theoretical neuronal model. The characteristics of noise-induced neural firing pattern, such as exponential decay in histogram of interspike interval (ISI) series, independence and stochasticity within ISI series are identified. Firing pattern similar to the simulated results was discovered in biological experiment on a neural pacemaker. The difference between this firing and integer multiple firing generated at a Hopf bifurcation point is also given. The results not only revealed the stochastic dynamics near a saddle-node bifurcation, but also gave practical approaches to identify the saddle-node bifurcation and to distinguish it from the Hopf bifurcation in neuronal system. In addition, many previously observed firing patterns can be attribute to stochastic firing pattern near such a saddle-node bifurcation.


Nonlinearity ◽  
2004 ◽  
Vol 17 (4) ◽  
pp. 1119-1151 ◽  
Author(s):  
Bernd Krauskopf ◽  
Bart E Oldeman

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Xia Liu

In this paper we treat a particular class of planar Filippov systems which consist of two smooth systems that are separated by a discontinuity boundary. In such systems one vector field undergoes a saddle-node bifurcation while the other vector field is transversal to the boundary. The boundary-saddle-node (BSN) bifurcation occurs at a critical value when the saddle-node point is located on the discontinuity boundary. We derive a local topological normal form for the BSN bifurcation and study its local dynamics by applying the classical Filippov’s convex method and a novel regularization approach. In fact, by the regularization approach a given Filippov system is approximated by a piecewise-smooth continuous system. Moreover, the regularization process produces a singular perturbation problem where the original discontinuous set becomes a center manifold. Thus, the regularization enables us to make use of the established theories for continuous systems and slow-fast systems to study the local behavior around the BSN bifurcation.


2015 ◽  
Vol 25 (12) ◽  
pp. 1550163 ◽  
Author(s):  
R. Salas-Cabrera ◽  
A. Hernandez-Colin ◽  
J. Roman-Flores ◽  
N. Salas-Cabrera

This work deals with the bifurcation phenomena that occur during the open-loop operation of a single-fed three-phase wound rotor induction motor. This paper demonstrates the occurrence of saddle-node bifurcation, hysteresis, supercritical saddle-node bifurcation, cusp and Hopf bifurcation during the individual operation of this electromechanical system. Some experimental results associated with the bifurcation phenomena are presented.


Sign in / Sign up

Export Citation Format

Share Document