A POLARIZED GALACTIC EMISSION MAPPING EXPERIMENT AT 5–10 GHZ

Author(s):  
DOMINGOS BARBOSA ◽  
RUI FONSECA ◽  
DINIS M. DOS SANTOS ◽  
LUIS CUPIDO ◽  
ANA MOURÃO ◽  
...  
1990 ◽  
Vol 139 ◽  
pp. 212-213
Author(s):  
M. Giard ◽  
F. Pajot ◽  
J. M. Lamarre ◽  
G. Serra

AROME∗ is a balloon-borne experiment which was built to carry out measurements of IR emission features in the diffuse galactic flux. The field of view is 0.5° and surface brightness gradients are detected through azimuthal scanning at a constant elevation angle. The detection of a feature is done by comparison of the fluxes measured in narrow and wide photometric bands centered on the feature's wavelength. Two flights have been performed (August 1987, October 1988), which detected a 3.3 μm feature in the direction of the galactic plane −6° < b < 6°, 60° > l > −50°. Since this feature is characteristic of aromatic C-H bonds, we assigned it to the emission of transiently heated polycyclic aromatic hydrocarbon molecules (PAHs). With this assumption, AROME measurements show that PAHs are an ubiquitous component of the interstellar matter which contain about 10% of the available cosmic carbon.


2018 ◽  
Vol 617 ◽  
pp. A90 ◽  
Author(s):  
Hao Liu

Context. Currently, detection of the primordial gravitational waves using the B-mode of cosmic microwave background (CMB) is primarily limited by our knowledge of the polarized microwave foreground emissions. Improvements of the foreground analysis are therefore necessary. As we revealed in an earlier paper, the E-mode and B-mode of the polarized foreground have noticeably different properties, both in morphology and frequency spectrum, suggesting that they arise from different physicalprocesses, and need to be studied separately. Aims. I study the polarized emission from Galactic loops, especially Loop I, and mainly focus on the following questions: Does the polarized loop emission contribute predominantly to the E-mode or B-mode? In which frequency bands and in which sky regions can the polarized loop emission be identified? Methods. Based on a well known result concerning the magnetic field alignment in supernova explosions, a theoretical expectation is established that the loop polarizations should be predominantly E-mode. In particular, the expected polarization angles of Loop I are compared with those from the real microwave band data of WMAP and Planck. Results and conclusions. The comparison between model and data shows remarkable consistency between the data and our expectations at all bands and for a large area of the sky. This result suggests that the polarized emission of Galactic Loop I is a major polarized component in all microwave bands from 23 to 353 GHz, and a considerable part of the polarized foreground likely originates from a local bubble associated with Loop I, instead of the far more distant Galactic emission. This result also provides a possible way to explain the E-to-B excess problem by contribution of the loops. Finally, this work may also provide the first geometrical evidence that the Earth was hit by a supernova explosion.


2021 ◽  
Author(s):  
Earl E. Scime ◽  
Cuyler Beatty ◽  
David Caron ◽  
Tyler Gilbert ◽  
Andrew Jemiolo ◽  
...  

2020 ◽  
Vol 09 (04) ◽  
pp. 2050019
Author(s):  
H. C. Chiang ◽  
T. Dyson ◽  
E. Egan ◽  
S. Eyono ◽  
N. Ghazi ◽  
...  

Measurements of redshifted 21[Formula: see text]cm emission of neutral hydrogen at [Formula: see text][Formula: see text]MHz have the potential to probe the cosmic “dark ages,” a period of the universe’s history that remains unobserved to date. Observations at these frequencies are exceptionally challenging because of bright Galactic foregrounds, ionospheric contamination, and terrestrial radio-frequency interference. Very few sky maps exist at [Formula: see text][Formula: see text]MHz, and most have modest resolution. We introduce the Array of Long Baseline Antennas for Taking Radio Observations from the Sub-Antarctic (ALBATROS), a new experiment that aims to image low-frequency Galactic emission with an order-of-magnitude improvement in resolution over existing data. The ALBATROS array will consist of antenna stations that operate autonomously, each recording baseband data that will be interferometrically combined offline. The array will be installed on Marion Island and will ultimately comprise 10 stations, with an operating frequency range of 1.2–125[Formula: see text]MHz and maximum baseline lengths of [Formula: see text][Formula: see text]km. We present the ALBATROS instrument design and discuss pathfinder observations that were taken from Marion Island during 2018–2019.


1973 ◽  
Vol 55 ◽  
pp. 258-275 ◽  
Author(s):  
James E. Felten

Recent theories of the origins of diffuse-background X-rays are reviewed, with emphasis on theories of the soft flux in the galactic plane and at the poles. This is probably partly galactic and partly extragalactic in origin. Failure to observe absorption by the Small Magellanic Cloud and by galactic gas in neighboring directions may be due to sources in the Cloud and to statistical fluctuations in galactic emission and absorption. Several models for numerous low-luminosity sources in the Galaxy are available. True ‘diffuse’ emission seems unnecessary. Absorption by Galactic gas seems to agree roughly with theory. The soft extragalactic component may arise in a hot intergalactic medium.The existence of a ‘diffuse’ galactic-plane excess in 1–100 keV is in some doubt. Low-luminosity sources may contribute to this as well.For isotropic X-rays in 1 keV – 1 MeV, superposition theories involving clusters of galaxies, Seyfert galaxies, etc. over a cosmological path length are now roughly viable. Simple ‘metagalactic’ Compton theories seem excluded if the break at 40 keV is sharp, but this is now in doubt. A very hot intergalactic medium at T ≈ 3 × 108 K would give the possibility of a sharp break.A recent upper limit on the line source strength of 100-MeV photons in the galactic plane may create some difficulties for cosmic-ray theory. The spectral shape of π-γ photons has become a matter of theoretical dispute.


1997 ◽  
Vol 486 (1) ◽  
pp. L23-L26 ◽  
Author(s):  
E. M. Leitch ◽  
A. C. S. Readhead ◽  
T. J. Pearson ◽  
S. T. Myers

2009 ◽  
Vol 5 (S267) ◽  
pp. 197-197
Author(s):  
Misty C. Bentz ◽  

AbstractEight new black hole masses have been derived from a recent reverberation-mapping experiment carried out at Lick Observatory. The masses lie in the range ~ 106–107M⊙ and will allow us to extend the low end of AGN scaling relationships by a factor of ~10.


2016 ◽  
Author(s):  
Jonathon Hunacek ◽  
James Bock ◽  
C. Matt Bradford ◽  
Bruce Bumble ◽  
Tzu-Ching Chang ◽  
...  

2019 ◽  
Vol 492 (1) ◽  
pp. L66-L68
Author(s):  
Michel Cassé ◽  
Bruno Mansoulié ◽  
Joseph Silk

ABSTRACT We derive the maximum fraction of energy emitted in the form of massive (Kaluza–Klein) gravitons by core collapse supernovae, and the corresponding minimal extra-dimensional Planck mass M* in the ADD gravity framework at TeV scales. Our constraints arise (a) from the extragalactic gamma-ray background observed by Fermi-LAT after astrophysical sources have been removed and (b) via the residual galactic emission left after astrophysical and potentially dark matter emission have been removed. We focus on a number of extra dimensions 3 and 4, since M* is then in the TeV range, where astrophysical and collider constraints compete. Lower limits on M* are derived in the case (a) of 8.0 and 1.1 TeV for n = 3 and n = 4, respectively, and in the case (b) of 16 and 1.9 TeV. These limits are especially robust and insensitive to the various uncertainties involved.


Sign in / Sign up

Export Citation Format

Share Document