COLLISION OF HIGHLY RELATIVISTIC PARTICLES WITH BLACK HOLES: THE GRAVITATIONAL RADIATION GENERATED

Author(s):  
VITOR CARDOSO ◽  
JOSÉ P. S. LEMOS
Author(s):  
Robert F O'Connell

First, we examine how spin is treated in special relativity and the necessity of introducing spin supplementary conditions (SSC) and how they are related to the choice of a center-of-mass of a spinning particle. Next, we discuss quantum electrodynamics and the Foldy-Wouthuysen transformation which we note is a position operator identical to the Pryce-Newton-Wigner position operator. The classical version of the operators are shown to be essential for the treatment of classical relativistic particles in general relativity, of special interest being the case of binary systems (black holes/neutron stars) which emit gravitational radiation.


Universe ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 24 ◽  
Author(s):  
Robert F. O’Connell

First, we examine how spin is treated in special relativity and the necessity of introducing spin supplementary conditions (SSC) and how they are related to the choice of a center-of-mass of a spinning particle. Next, we discuss quantum electrodynamics and the Foldy–Wouthuysen transformation which we note is a position operator identical to the Pryce–Newton–Wigner position operator. The classical version of the operators are shown to be essential for the treatment of classical relativistic particles in general relativity, of special interest being the case of binary systems (black holes/neutron stars) which emit gravitational radiation.


2016 ◽  
Vol 12 (S324) ◽  
pp. 273-278
Author(s):  
Robert Lasenby

AbstractBosonic fields around a spinning black hole can be amplified via ‘superradiance’, a wave analogue of the Penrose process, which extracts energy and momentum from the black hole. For hypothetical ultra-light bosons, with Compton wavelengths on ≳ km scales, such a process can lead to the exponential growth of gravitationally bound states around astrophysical Kerr black holes. If such particles exist, as predicted in many theories of beyond Standard Model physics, then these bosonic clouds give rise to a number of potentially-observable signals. Among the most promising are monochromatic gravitational radiation signals which could be detected at Advanced LIGO and future gravitational wave observatories.


2019 ◽  
Vol 34 (16) ◽  
pp. 1950124
Author(s):  
Paul H. Frampton

We study the merger rate of dark matter PIMBHs (Primordial Intermediate Mass Black Holes). We conclude that the black holes observed by LIGO in GW150914 and later events were probably not dark matter PIMBHs but rather the result of gravitational collapse of very massive stars. To study the PIMBHs by gravitational radiation will require a detector sensitive to frequencies below 10 Hz and otherwise more sensitive than LIGO. The LISA detector, expected to come online in 2034, will be useful at frequencies below 1 Hz but further gravitational wave detectors beyond LISA, sensitive up to 10 Hz, and higher strain sensitivity will be necessary to fully study dark matter.


2002 ◽  
Vol 65 (12) ◽  
Author(s):  
J. Baker ◽  
M. Campanelli ◽  
C. O. Lousto ◽  
R. Takahashi

Sign in / Sign up

Export Citation Format

Share Document