scholarly journals Rotation and Spin and Position Operators in Relativistic Gravity and Quantum Electrodynamics

Author(s):  
Robert F O'Connell

First, we examine how spin is treated in special relativity and the necessity of introducing spin supplementary conditions (SSC) and how they are related to the choice of a center-of-mass of a spinning particle. Next, we discuss quantum electrodynamics and the Foldy-Wouthuysen transformation which we note is a position operator identical to the Pryce-Newton-Wigner position operator. The classical version of the operators are shown to be essential for the treatment of classical relativistic particles in general relativity, of special interest being the case of binary systems (black holes/neutron stars) which emit gravitational radiation.

Universe ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 24 ◽  
Author(s):  
Robert F. O’Connell

First, we examine how spin is treated in special relativity and the necessity of introducing spin supplementary conditions (SSC) and how they are related to the choice of a center-of-mass of a spinning particle. Next, we discuss quantum electrodynamics and the Foldy–Wouthuysen transformation which we note is a position operator identical to the Pryce–Newton–Wigner position operator. The classical version of the operators are shown to be essential for the treatment of classical relativistic particles in general relativity, of special interest being the case of binary systems (black holes/neutron stars) which emit gravitational radiation.


2007 ◽  
Vol 16 (12a) ◽  
pp. 2319-2324 ◽  
Author(s):  
JAMES GRABER

LISA may make it possible to test the black-hole uniqueness theorems of general relativity, also called the no-hair theorems, by Ryan's method of detecting the quadrupole moment of a black hole using high-mass-ratio inspirals. This test can be performed more robustly by observing inspirals in earlier stages, where the simplifications used in making inspiral predictions by the perturbative and post-Newtonian methods are more nearly correct. Current concepts for future missions such as DECIGO and BBO would allow even more stringent tests by this same method. Recently discovered evidence supports the existence of intermediate-mass black holes (IMBHs). Inspirals of binary systems with one IMBH and one stellar-mass black hole would fall into the frequency band of proposed maximum sensitivity for DECIGO and BBO. This would enable us to perform the Ryan test more precisely and more robustly. We explain why tests based on observations earlier in the inspiral are more robust and provide preliminary estimates of possible optimal future observations.


1986 ◽  
Vol 64 (4) ◽  
pp. 482-483
Author(s):  
R. H. Becker

Accreting neutron star or black holes in binary systems can, under appropriate circumstances, eject jets of particles into their environment. This is most readily observed in SS433, Sco X-1, and Cyg X-3. We infer the presence of the injection of relativistic particles in a number of other galactic sources where actual jets have not been observed. In some cases the energy imparted results in nonthermal radio sources comparable in size to supernova remnants.


2016 ◽  
Vol 13 (08) ◽  
pp. 1630014 ◽  
Author(s):  
Alessandro D. A. M. Spallicci ◽  
Maurice H. P. M. van Putten

Obviously, in Galilean physics, the universality of free fall implies an inertial frame, which in turns implies that the mass [Formula: see text] of the falling body is omitted (because it is a test mass; put otherwise, the center of mass of the system coincides with the center of the main, and fixed, mass [Formula: see text]; or else, we consider only a homogeneous gravitational field). Conversely, an additional (in the opposite or same direction) acceleration proportional to [Formula: see text] would rise either for an observer at the center of mass of the system, or for an observer at a fixed distance from the center of mass of [Formula: see text]. These elementary, but overlooked, considerations fully respect the equivalence principle (EP) and the (local) identity of an inertial or a gravitational pull for an observer in the Einstein cabin. They value as fore-runners of the self-force and gauge dependency in general relativity. Because of its importance in teaching and in the history of physics, coupled to the introductory role to Einstein’s EP, the approximate nature of Galilei’s law of free fall is explored herein. When stepping into general relativity, we report how the geodesic free fall into a black hole was the subject of an intense debate again centered on coordinate choice. Later, we describe how the infalling mass and the emitted gravitational radiation affect the free fall motion of a body. The general relativistic self-force might be dealt with to perfectly fit into a geodesic conception of motion. Then, embracing quantum mechanics, real black holes are not classical static objects any longer. Free fall has to handle the Hawking radiation, and leads us to new perspectives on the varying mass of the evaporating black hole and on the varying energy of the falling mass. Along the paper, we also estimate our findings for ordinary masses being dropped from a Galilean or Einsteinian Pisa-like tower with respect to the current state of the art drawn from precise measurements in ground and space laboratories, and to the constraints posed by quantum measurements. Appendix A describes how education physics and high impact factor journals discuss the free fall. Finally, case studies conducted on undergraduate students and teachers are reviewed.


Author(s):  
Charles D. Bailyn

This chapter looks at the detection of black holes through gravitational waves. While further improvements can be expected in the ability to detect and measure electromagnetic radiation, it is possible that the next great advances in observational astrophysics will come from the detection of other kinds of information altogether. Currently, there is a great excitement about the possibility of directly detecting an entirely new “celestial messenger,” namely, gravitational radiation. The existence of gravitational waves is a prediction of general relativity, and current technology is very close to being able to detect them directly. The strongest sources of gravitational radiation are expected to be merging black holes. Since such mergers are expected to occur, both between stellar-mass and supermassive black holes, the detection of gravitational radiation would provide a new way not only to explore gravitational physics but also to look for and to study celestial black holes.


1996 ◽  
Vol 165 ◽  
pp. 153-183
Author(s):  
Kip S. Thorne

According to general relativity theory, compact concentrations of energy (e.g., neutron stars and black holes) should warp spacetime strongly, and whenever such an energy concentration changes shape, it should create a dynamically changing spacetime warpage that propagates out through the Universe at the speed of light. This propagating warpage is called gravitational radiation — a name that arises from general relativity's description of gravity as a consequence of spacetime warpage.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 137
Author(s):  
Andrzej Królak ◽  
Paritosh Verma

In this paper we present the most recent observations of gravitational waves (GWs) by LIGO and Virgo detectors. We also discuss contributions of the recent Nobel prize winner, Sir Roger Penrose to understanding gravitational radiation and black holes (BHs). We make a short introduction to GW phenomenon in general relativity (GR) and we present main sources of detectable GW signals. We describe the laser interferometric detectors that made the first observations of GWs. We briefly discuss the first direct detection of GW signal that originated from a merger of two BHs and the first detection of GW signal form merger of two neutron stars (NSs). Finally we present in more detail the observations of GW signals made during the first half of the most recent observing run of the LIGO and Virgo projects. Finally we present prospects for future GW observations.


2007 ◽  
Vol 3 (S246) ◽  
pp. 265-266
Author(s):  
J. M. B. Downing ◽  
R. Spurzem

AbstractStellar mass compact object binaries are promising sources of gravitational radiation for the current generation of ground-based detectors, VIRGO and LIGO. Accurate templates for gravitational waveforms are needed in order to extract an event from the VIRGO/LIGO data stream. In the case of relativistic, compact object binaries accurate orbital parameters are necessary in order to produce such templates. Binary systems are affected by their stellar environment and thus the parameters of the binary population of a dense star cluster will be different from those of the field population. We propose to investigate the parameters of relativistic binary populations in dense star clusters using direct N-body simulations with a Post-Newtonian treatment of general relativity for the close binaries.


Sign in / Sign up

Export Citation Format

Share Document