THEORY AND SIMULATION OF MIXED GAS ADSORPTION IN ACTIVATED CARBONS

Author(s):  
N. QUIRKE
2011 ◽  
Vol 25 (7) ◽  
pp. 3355-3367 ◽  
Author(s):  
Mahmud Sudibandriyo ◽  
Sayeed A. Mohammad ◽  
Robert L. Robinson ◽  
Khaled A. M. Gasem

2021 ◽  
Author(s):  
Yao-Ting Wang ◽  
Corie M. McHale ◽  
Xiqu Wang ◽  
Chung-Kai Chang ◽  
Yu-Chun Chuang ◽  
...  

A porous molecular crystal (PMC) assembled by close-packing of macrocyclic cyclotetrabenzoin acetate is an efficient adsorbent for selective CO<sub>2</sub> capture. The 7.1´7.1 Å square pore of PMC and its ester C=O group play important roles in improving its affinity for CO<sub>2</sub> molecules. Thermodynamically, the benzene walls of macrocycle strongly promote CO<sub>2</sub> adsorption via [p···p] interactions at low pressure. In addition, the polar carbonyl groups pointing inward the square channels reduce the size of aperture to a 5.0´5.0 Å square, which offers kinetic selectivity for CO<sub>2</sub> capture. The PMC features water tolerance and high structural stability under vacuum and various gas adsorption conditions, which are rare among intrinsically porous organic molecules. In mixed-gas breakthrough experiments, it exhibits efficient CO<sub>2</sub>/N<sub>2</sub> and CO<sub>2</sub>/CH<sub>4</sub> separations under kinetic flow conditions. Most importantly, the moderate adsorbate–adsorbent interaction allows the PMC to be readily regenerated, and therefore applied to pressure swing adsorption (PSA) processes. The eluted N<sub>2</sub> and CH<sub>4</sub> are obtained with over 99.9% and 99.8% purity, respectively, and the separation performance is stable for 30 cycles. Coupled with its easy synthesis, these properties make cyclotetrabenzoin acetate a promising adsorbent for CO<sub>2</sub> separations from flue and natural gases.


2021 ◽  
Vol 9 ◽  
Author(s):  
Maria Bernardo ◽  
Nuno Lapa ◽  
Isabel Fonseca ◽  
Isabel A. A. C. Esteves

Porous carbon materials, derived from biomass wastes and/or as by-products, are considered versatile, economical and environmentally sustainable. Recently, their high adsorption capacity has led to an increased interest in several environmental applications related to separation/purification both in liquid- and gas-phases. Specifically, their use in carbon dioxide (CO2) capture/sequestration has been a hot topic in the framework of gas adsorption applications. Cost effective biomass porous carbons with enhanced textural properties and high CO2 uptakes present themselves as attractive alternative adsorbents with potential to be used in CO2 capture/separation, apart from zeolites, commercial activated carbons and metal-organic frameworks (MOFs). The renewable and sustainable character of the precursor of these bioadsorbents must be highlighted in the context of a circular-economy and emergent renewable energy market to reach the EU climate and energy goals. This mini-review summarizes the current understandings and discussions about the development of porous carbons derived from bio-wastes, focusing their application to capture CO2 and upgrade biogas to biomethane by adsorption-based processes. Biogas is composed by 55–65 v/v% of methane (CH4) mainly in 35–45 v/v% of CO2. The biogas upgraded to bio-CH4 (97%v/v) through an adsorption process yields after proper conditioning to high quality biomethane and replaces natural gas of fossil source. The circular-economy impact of bio-CH4 production is further enhanced by the use of biomass-derived porous carbons employed in the production process.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 103 ◽  
Author(s):  
Adeela Rehman ◽  
Mira Park ◽  
Soo-Jin Park

Carbon-based materials is considered one of the oldest and extensively studied research areas related to gas adsorption, energy storage and wastewater treatment for removing organic and inorganic contaminants. Efficient adsorption on activated carbon relies heavily upon the surface chemistry and textural features of the main framework. The activation techniques and the nature of the precursor have strong impacts on surface functionalities. Consequently, the main emphasis for scientists is to innovate or improve the activation methods in an optimal way by selecting suitable precursors for desired adsorption. Various approaches, including acid treatment, base treatment and impregnation methods, have been used to design activated carbons with chemically modified surfaces. The present review article intends to deliver precise knowledge on efforts devoted by researchers to surface modification of activated carbons. Chemical modification approaches used to design modified activated carbons for gas adsorption, energy storage and water treatment are discussed here.


RSC Advances ◽  
2016 ◽  
Vol 6 (55) ◽  
pp. 50138-50143 ◽  
Author(s):  
D. Li ◽  
W. B. Li ◽  
J. S. Shi ◽  
F. W. Xin

Heteroatoms doped porous carbons were synthesized with different acids as catalysts and heteroatoms source. Heteroatoms doping enhances gas adsorption capacity.


2017 ◽  
Vol 07 (01) ◽  
Author(s):  
Harold Crespo Sariol ◽  
Thayset Marino Peacok ◽  
Jan Yperman ◽  
Karen Leyssens ◽  
Vera Meynen ◽  
...  

1980 ◽  
Vol 69 (3) ◽  
pp. 369-378 ◽  
Author(s):  
M. Borówko ◽  
M. Jaroniec ◽  
W. Rudziński

2018 ◽  
Vol 136 ◽  
pp. 753-760 ◽  
Author(s):  
Débora Aline Soares Maia ◽  
José Carlos Alexandre de Oliveira ◽  
Marcelo Sandro Nazzarro ◽  
Karim Manuel Sapag ◽  
Raul Horácio López ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document