SOLITON EXCITATIONS AND PERIODIC WAVES WITHOUT DISPERSION RELATION IN (2+1)-DIMENSIONAL DISPERSIVE LONG WAVE EQUATION

Author(s):  
CHUN-LI CHEN ◽  
SEN-YUE LOU
Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 878
Author(s):  
Alexei Cheviakov ◽  
Denys Dutykh ◽  
Aidar Assylbekuly

We investigate a family of higher-order Benjamin–Bona–Mahony-type equations, which appeared in the course of study towards finding a Galilei-invariant, energy-preserving long wave equation. We perform local symmetry and conservation laws classification for this family of Partial Differential Equations (PDEs). The analysis reveals that this family includes a special equation which admits additional, higher-order local symmetries and conservation laws. We compute its solitary waves and simulate their collisions. The numerical simulations show that their collision is elastic, which is an indication of its S−integrability. This particular PDE turns out to be a rescaled version of the celebrated Camassa–Holm equation, which confirms its integrability.


A detailed discussion of Nekrasov’s approach to the steady water-wave problems leads to a new integral equation formulation of the periodic problem. This development allows the adaptation of the methods of Amick & Toland (1981) to show the convergence of periodic waves to solitary waves in the long-wave limit. In addition, it is shown how the classical integral equation formulation due to Nekrasov leads, via the Maximum Principle, to new results about qualitative features of periodic waves for which there has long been a global existence theory (Krasovskii 1961, Keady & Norbury 1978).


Author(s):  
Peter J. Olver

AbstractThe BBM or Regularized Long Wave Equation is shown to possess only three non-trivial independent conservation laws. In order to prove this result, a new theory of Euler-type operators in the formal calculus of variations will be developed in detail.


2020 ◽  
Vol 66 (3 May-Jun) ◽  
pp. 297
Author(s):  
Mehmet Senol

In this study, new extended direct algebraic method is successfully implemented to acquire new exact wave solution sets for symmetric regularized-long-wave (SRLW) equation which arise in long water flow models. By the help of Mathematica symbolic calculation package, the method produced a great number of analytical solutions. We also presented a few graphical illustrations for some surfaces. The fractional derivatives are considered in the conformable sense. All of the solutions were checked by substitution to ensure the reliability of the method. Obtained results confirm that the method is straightforward, powerful and effective method to attain exact solutions for nonlinear fractional differential equations. Therefore, the method is a good candidate to take part in the existing literature.


Sign in / Sign up

Export Citation Format

Share Document