scholarly journals Boundary layer collapses described by the two-dimensional intermediate long-wave equation

2020 ◽  
Vol 203 (1) ◽  
pp. 512-523
Author(s):  
J. O. Oloo ◽  
V. I. Shrira
2001 ◽  
Vol 446 ◽  
pp. 133-171 ◽  
Author(s):  
VICTOR I. SHRIRA ◽  
IGOR A. SAZONOV

The work, being the first in a series concerned with the evolution of small perturbations in shear flows, studies the linear initial-value problem for inviscid spatially harmonic perturbations of two-dimensional shear flows of boundary-layer type without inflection points. Of main interest are the perturbations of wavelengths 2π/k long compared to the boundary-layer thickness H, kH = ε [Lt ] 1. By means of an asymptotic expansion, based on the smallness of ε, we show that for a generic initial perturbation there is a long time interval of duration ∼ ε−3 ln(1/ε), where the perturbation representing an aggregate of continuous spectrum modes of the Rayleigh equation behaves as if it were a single discrete spectrum mode having no singularity to the leading order. Following Briggs et al. (1970), who introduced the concept of decaying wave-like perturbations due to the presence of the ‘Landau pole’ into hydrodynamics, we call this object a quasi-mode. We trace analytically how the quasi-mode contribution to the entire perturbation field evolves for different field characteristics. We find that over O(ε−3 ln(1/ε)) time interval, the quasi-mode dominates the velocity field. In particular, over this interval the share of the perturbation energy contained in the quasi-mode is very close to 1, with the discrepancy in the generic case being O(ε4) (O(ε4) for the Blasius flow). The mode is weakly decaying, as exp(−ε3t). At larger times the quasi-mode ceases to dominate in the perturbation field and the perturbation decay law switches to the classical t−2. By definition, the quasi-modes are singular in a critical layer; however, we show that in our context their singularity does not appear in the leading order. From the physical viewpoint, the presence of a small jump in the higher orders has little significance to the manner in which perturbations of the flow can participate in linear and nonlinear resonant interactions. Since we have established that the decay rate of the quasi-modes sharply increases with the increase of the wavenumber, one of the major conjectures of the analysis is that the long-wave components prevail in the large-time asymptotics of a wide class of initial perturbations, not necessarily the predominantly long-wave perturbations. Thus, the explicit expressions derived in the long-wave approximation describe the asymptotics of a much wider class of initial conditions than might have been anticipated. The concept of quasi-modes also enables us to shed new light on the foundations of the method of piecewise linear approximations widely used in hydrodynamics.


1968 ◽  
Vol 19 (1) ◽  
pp. 1-19 ◽  
Author(s):  
H. McDonald

SummaryRecently two authors, Nash and Goldberg, have suggested, intuitively, that the rate at which the shear stress distribution in an incompressible, two-dimensional, turbulent boundary layer would return to its equilibrium value is directly proportional to the extent of the departure from the equilibrium state. Examination of the behaviour of the integral properties of the boundary layer supports this hypothesis. In the present paper a relationship similar to the suggestion of Nash and Goldberg is derived from the local balance of the kinetic energy of the turbulence. Coupling this simple derived relationship to the boundary layer momentum and moment-of-momentum integral equations results in quite accurate predictions of the behaviour of non-equilibrium turbulent boundary layers in arbitrary adverse (given) pressure distributions.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 878
Author(s):  
Alexei Cheviakov ◽  
Denys Dutykh ◽  
Aidar Assylbekuly

We investigate a family of higher-order Benjamin–Bona–Mahony-type equations, which appeared in the course of study towards finding a Galilei-invariant, energy-preserving long wave equation. We perform local symmetry and conservation laws classification for this family of Partial Differential Equations (PDEs). The analysis reveals that this family includes a special equation which admits additional, higher-order local symmetries and conservation laws. We compute its solitary waves and simulate their collisions. The numerical simulations show that their collision is elastic, which is an indication of its S−integrability. This particular PDE turns out to be a rescaled version of the celebrated Camassa–Holm equation, which confirms its integrability.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1439
Author(s):  
Chaudry Masood Khalique ◽  
Karabo Plaatjie

In this article, we investigate a two-dimensional generalized shallow water wave equation. Lie symmetries of the equation are computed first and then used to perform symmetry reductions. By utilizing the three translation symmetries of the equation, a fourth-order ordinary differential equation is obtained and solved in terms of an incomplete elliptic integral. Moreover, with the aid of Kudryashov’s approach, more closed-form solutions are constructed. In addition, energy and linear momentum conservation laws for the underlying equation are computed by engaging the multiplier approach as well as Noether’s theorem.


2001 ◽  
Vol 432 ◽  
pp. 69-90 ◽  
Author(s):  
RUDOLPH A. KING ◽  
KENNETH S. BREUER

An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional and oblique (three-dimensional) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well-defined wavenumber spectrum with fundamental wavenumber kw. A planar downstream-travelling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to kts = kw. The range of acoustic forcing levels, ε, and roughness heights, Δh, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination εΔh resulted in subsequent nonlinear development of the Tollmien–Schlichting (T–S) wave. This study provides the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the two-dimensional and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber αw and measuring the T–S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.


Sign in / Sign up

Export Citation Format

Share Document