scholarly journals PREHEATING AND PHASE TRANSITIONS IN GAUGE THEORIES

Author(s):  
A. RAJANTIE
2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Soumyadeep Chaudhuri ◽  
Eliezer Rabinovici

Abstract Considering marginally relevant and relevant deformations of the weakly coupled (3 + 1)-dimensional large N conformal gauge theories introduced in [1], we study the patterns of phase transitions in these systems that lead to a symmetry-broken phase in the high temperature limit. These deformations involve only the scalar fields in the models. The marginally relevant deformations are obtained by varying certain double trace quartic couplings between the scalar fields. The relevant deformations, on the other hand, are obtained by adding masses to the scalar fields while keeping all the couplings frozen at their fixed point values. At the N → ∞ limit, the RG flows triggered by these deformations approach the aforementioned weakly coupled CFTs in the UV regime. These UV fixed points lie on a conformal manifold with the shape of a circle in the space of couplings. As shown in [1], in certain parameter regimes a subset of points on this manifold exhibits thermal order characterized by the spontaneous breaking of a global ℤ2 or U(1) symmetry and Higgsing of a subset of gauge bosons at all nonzero temperatures. We show that the RG flows triggered by the marginally relevant deformations lead to a weakly coupled IR fixed point which lacks the thermal order. Thus, the systems defined by these RG flows undergo a transition from a disordered phase at low temperatures to an ordered phase at high temperatures. This provides examples of both inverse symmetry breaking and symmetry nonrestoration. For the relevant deformations, we demonstrate that a variety of phase transitions are possible depending on the signs and magnitudes of the squares of the masses added to the scalar fields. Using thermal perturbation theory, we derive the approximate values of the critical temperatures for all these phase transitions. All the results are obtained at the N → ∞ limit. Most of them are found in a reliable weak coupling regime and for others we present qualitative arguments.


1980 ◽  
Vol 21 (8) ◽  
pp. 2423-2424
Author(s):  
T. Banks ◽  
D. Horn

2020 ◽  
Vol 101 (6) ◽  
Author(s):  
Claudio Bonati ◽  
Andrea Pelissetto ◽  
Ettore Vicari

1983 ◽  
Vol 122 (2) ◽  
pp. 148-153 ◽  
Author(s):  
V.F. Müller ◽  
T. Raddatz ◽  
W. Rühl

1979 ◽  
Vol 19 (6) ◽  
pp. 1906-1911 ◽  
Author(s):  
K. S. Viswanathan ◽  
J. H. Yee

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Clay Cordova ◽  
Daniel Freed ◽  
Ho Tat Lam ◽  
Nathan Seiberg

We extend our earlier work on anomalies in the space of coupling constants to four-dimensional gauge theories. Pure Yang-Mills theory (without matter) with a simple and simply connected gauge group has a mixed anomaly between its one-form global symmetry (associated with the center) and the periodicity of the \thetaθ-parameter. This anomaly is at the root of many recently discovered properties of these theories, including their phase transitions and interfaces. These new anomalies can be used to extend this understanding to systems without discrete symmetries (such as time-reversal). We also study SU(N)SU(N) and Sp(N)Sp(N) gauge theories with matter in the fundamental representation. Here we find a mixed anomaly between the flavor symmetry group and the \thetaθ-periodicity. Again, this anomaly unifies distinct recently-discovered phenomena in these theories and controls phase transitions and the dynamics on interfaces.


1982 ◽  
Vol 115 (4) ◽  
pp. 301-306 ◽  
Author(s):  
J.M. Drouffe ◽  
K.J.M. Moriarty ◽  
G. Münster

2015 ◽  
Vol 30 (34) ◽  
pp. 1550203 ◽  
Author(s):  
Renata Jora

We study the phase diagram of an [Formula: see text] gauge theory in terms of the number of colors [Formula: see text] and flavors [Formula: see text] with emphasis on the confinement and chiral symmetry breaking phases. We argue that as opposed to SUSY QCD there is a small region in the [Formula: see text] plane where the theory has the chiral symmetry broken but it is unconfined. The possibility of a new phase with strong confinement and chiral symmetry breaking is suggested.


Sign in / Sign up

Export Citation Format

Share Document