CROSS-VALIDATION AND INFORMATION MEASURES FOR RAM BASED NEURAL NETWORKS

Author(s):  
T. M. JØRGENSEN ◽  
S. S. CHRISTENSEN ◽  
C. LIISBERG
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Wong ◽  
Z. Q. Lin ◽  
L. Wang ◽  
A. G. Chung ◽  
B. Shen ◽  
...  

AbstractA critical step in effective care and treatment planning for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause for the coronavirus disease 2019 (COVID-19) pandemic, is the assessment of the severity of disease progression. Chest x-rays (CXRs) are often used to assess SARS-CoV-2 severity, with two important assessment metrics being extent of lung involvement and degree of opacity. In this proof-of-concept study, we assess the feasibility of computer-aided scoring of CXRs of SARS-CoV-2 lung disease severity using a deep learning system. Data consisted of 396 CXRs from SARS-CoV-2 positive patient cases. Geographic extent and opacity extent were scored by two board-certified expert chest radiologists (with 20+ years of experience) and a 2nd-year radiology resident. The deep neural networks used in this study, which we name COVID-Net S, are based on a COVID-Net network architecture. 100 versions of the network were independently learned (50 to perform geographic extent scoring and 50 to perform opacity extent scoring) using random subsets of CXRs from the study, and we evaluated the networks using stratified Monte Carlo cross-validation experiments. The COVID-Net S deep neural networks yielded R$$^2$$ 2 of $$0.664 \pm 0.032$$ 0.664 ± 0.032 and $$0.635 \pm 0.044$$ 0.635 ± 0.044 between predicted scores and radiologist scores for geographic extent and opacity extent, respectively, in stratified Monte Carlo cross-validation experiments. The best performing COVID-Net S networks achieved R$$^2$$ 2 of 0.739 and 0.741 between predicted scores and radiologist scores for geographic extent and opacity extent, respectively. The results are promising and suggest that the use of deep neural networks on CXRs could be an effective tool for computer-aided assessment of SARS-CoV-2 lung disease severity, although additional studies are needed before adoption for routine clinical use.


2018 ◽  
Vol 16 (08) ◽  
pp. 1840005 ◽  
Author(s):  
Priscila G. M. dos Santos ◽  
Rodrigo S. Sousa ◽  
Ismael C. S. Araujo ◽  
Adenilton J. da Silva

This paper proposes a quantum-classical algorithm to evaluate and select classical artificial neural networks architectures. The proposed algorithm is based on a probabilistic quantum memory (PQM) and the possibility to train artificial neural networks (ANN) in superposition. We obtain an exponential quantum speedup in the evaluation of neural networks. We also verify experimentally through a reduced experimental analysis that the proposed algorithm can be used to select near-optimal neural networks.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 34
Author(s):  
Sebastian C. Ibañez ◽  
Carlo Vincienzo G. Dajac ◽  
Marissa P. Liponhay ◽  
Erika Fille T. Legara ◽  
Jon Michael H. Esteban ◽  
...  

Forecasting reservoir water levels is essential in water supply management, impacting both operations and intervention strategies. This paper examines the short-term and long-term forecasting performance of several statistical and machine learning-based methods for predicting the water levels of the Angat Dam in the Philippines. A total of six forecasting methods are compared: naïve/persistence; seasonal mean; autoregressive integrated moving average (ARIMA); gradient boosting machines (GBM); and two deep neural networks (DNN) using a long short-term memory-based (LSTM) encoder-decoder architecture: a univariate model (DNN-U) and a multivariate model (DNN-M). Daily historical water levels from 2001 to 2021 are used in predicting future water levels. In addition, we include meteorological data (rainfall and the Oceanic Niño Index) and irrigation data as exogenous variables. To evaluate the forecast accuracy of our methods, we use a time series cross-validation approach to establish a more robust estimate of the error statistics. Our results show that our DNN-U model has the best accuracy in the 1-day-ahead scenario with a mean absolute error (MAE) and root mean square error (RMSE) of 0.2 m. In the 30-day-, 90-day-, and 180-day-ahead scenarios, the DNN-M shows the best performance with MAE (RMSE) scores of 2.9 (3.3), 5.1 (6.0), and 6.7 (8.1) meters, respectively. Additionally, we demonstrate that further improvements in performance are possible by scanning over all possible combinations of the exogenous variables and only using a subset of them as features. In summary, we provide a comprehensive framework for evaluating water level forecasting by defining a baseline accuracy, analyzing performance across multiple prediction horizons, using time series cross-validation to assess accuracy and uncertainty, and examining the effects of exogenous variables on forecasting performance. In the process, our work addresses several notable gaps in the methodologies of previous works.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu Zhang ◽  
Yahui Long ◽  
Chee Keong Kwoh

Abstract Background Long non-coding RNAs (lncRNAs) can exert functions via forming triplex with DNA. The current methods in predicting the triplex formation mainly rely on mathematic statistic according to the base paring rules. However, these methods have two main limitations: (1) they identify a large number of triplex-forming lncRNAs, but the limited number of experimentally verified triplex-forming lncRNA indicates that maybe not all of them can form triplex in practice, and (2) their predictions only consider the theoretical relationship while lacking the features from the experimentally verified data. Results In this work, we develop an integrated program named TriplexFPP (Triplex Forming Potential Prediction), which is the first machine learning model in DNA:RNA triplex prediction. TriplexFPP predicts the most likely triplex-forming lncRNAs and DNA sites based on the experimentally verified data, where the high-level features are learned by the convolutional neural networks. In the fivefold cross validation, the average values of Area Under the ROC curves and PRC curves for removed redundancy triplex-forming lncRNA dataset with threshold 0.8 are 0.9649 and 0.9996, and these two values for triplex DNA sites prediction are 0.8705 and 0.9671, respectively. Besides, we also briefly summarize the cis and trans targeting of triplexes lncRNAs. Conclusions The TriplexFPP is able to predict the most likely triplex-forming lncRNAs from all the lncRNAs with computationally defined triplex forming capacities and the potential of a DNA site to become a triplex. It may provide insights to the exploration of lncRNA functions.


2008 ◽  
Vol 26 (3) ◽  
pp. 275-292 ◽  
Author(s):  
Geng Cui ◽  
Man Leung Wong ◽  
Guichang Zhang ◽  
Lin Li

PurposeThe purpose of this paper is to assess the performance of competing methods and model selection, which are non‐trivial issues given the financial implications. Researchers have adopted various methods including statistical models and machine learning methods such as neural networks to assist decision making in direct marketing. However, due to the different performance criteria and validation techniques currently in practice, comparing different methods is often not straightforward.Design/methodology/approachThis study compares the performance of neural networks with that of classification and regression tree, latent class models and logistic regression using three criteria – simple error rate, area under the receiver operating characteristic curve (AUROC), and cumulative lift – and two validation methods, i.e. bootstrap and stratified k‐fold cross‐validation. Systematic experiments are conducted to compare their performance.FindingsThe results suggest that these methods vary in performance across different criteria and validation methods. Overall, neural networks outperform the others in AUROC value and cumulative lifts, and the stratified ten‐fold cross‐validation produces more accurate results than bootstrap validation.Practical implicationsTo select predictive models to support direct marketing decisions, researchers need to adopt appropriate performance criteria and validation procedures.Originality/valueThe study addresses the key issues in model selection, i.e. performance criteria and validation methods, and conducts systematic analyses to generate the findings and practical implications.


1999 ◽  
Author(s):  
Christian Linneberg ◽  
Thomas M. Joergensen

Sign in / Sign up

Export Citation Format

Share Document