Topological defects and phase transitions

Author(s):  
J. Michael Kosterlitz
2017 ◽  
Vol 32 (15) ◽  
pp. 1740001 ◽  
Author(s):  
Maxim Yu. Khlopov

In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.


2019 ◽  
Vol 50 (5-6) ◽  
pp. 34-37 ◽  
Author(s):  
V.B. Eltsov ◽  
J. Nissinen ◽  
G.E. Volovik

All realistic second order phase transitions are undergone at finite transition rate and are therefore non-adiabatic. In symmetry-breaking phase transitions the non-adiabatic processes, as predicted by Kibble and Zurek [1, 2], lead to the formation of topological defects (the so-called Kibble-Zurek mechanism). The exact nature of the resultingdefects depends on the detailed symmetry-breaking pattern.


1997 ◽  
Vol 50 (4) ◽  
pp. 697 ◽  
Author(s):  
T. W. B. Kibble

Our present theories of particle physics and cosmology, taken together, suggest that very early in its history, the universe underwent a series of phase transitions, at which topological defects, similar to those formed in some condensed matter transitions, may have been created. Such defects, in particular cosmic strings, may survive long enough to have important observable effects in the universe today. Predicting these effects requires us to estimate the initial defect density and the way that defects subsequently evolve. Very similar problems arise in condensed matter systems, and recently it has been possible to test some of our ideas about the formation of defects using experiments with liquid helium-3 (in collaboration with the Low Temperature Laboratory in Helsinki). I shall review the present status of this theory.


1989 ◽  
Vol 39 (12) ◽  
pp. 3557-3567 ◽  
Author(s):  
Hardy M. Hodges

Author(s):  
Titus Masese ◽  
Yoshinobu Miyazaki ◽  
Godwill Mbiti Kanyolo ◽  
Teruo Takahashi ◽  
Miyu Ito ◽  
...  

<div><b>Endowed with a multitude of exquisite properties such as rich electrochemistry, superb topology and eccentric electromagnetic phenomena, honeycomb layered oxides have risen to the top echelons of science with applications in diverse fields ranging from condensed matter physics, solid-state chemistry, materials science, solid-state ionics to electrochemistry. Although these features are known to stem from the utilitarian structure innate in these oxides, their functionalities are vastly underutilised as their underlying atomistic mechanisms remain unknown. Therefore in this study, atomic resolution imaging on pristine K<sub>2</sub>Ni<sub>2</sub>TeO<sub>6 </sub>along multiple zone axes were conducted using spherical aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM) to reveal hitherto unreported topological defects and curvature which can be associated with various phase transitions. Furthermore we discover, <i>for the first time</i>, the occurrence of a new stacking variant with P3-type sequence alongside the well-reported P2-type stacking domains. Through this work, we provide insights into the connection between these unique structural disorders to the electrochemical properties of honeycomb layered oxides. The mechanism of the phase transitions reported herein is bound to become apparent upon high alkali-ion mobility, providing invaluable clues to potentially improve their functional performance in, for instance, energy storage applications. Our findings have the potential to inspire further experimental and theoretical studies into the role of stacking and topology in honeycomb layered oxides.</b></div>


Author(s):  
Michael Kachelriess

As the early universe cools down, it may perform transitions to phases with more and more broken symmetries. In a first-order phase transition, fields may be trapped in the false vacuum; the rate of the resulting tunneling process to the true vacuum is derived. Phase transitions can lead also to the formation of topological defects. Their structure and the reason for their stability are discussed.


Sign in / Sign up

Export Citation Format

Share Document