scholarly journals Lessons from topological superfluids: Safe and dangerous routes to antispacetime

2019 ◽  
Vol 50 (5-6) ◽  
pp. 34-37 ◽  
Author(s):  
V.B. Eltsov ◽  
J. Nissinen ◽  
G.E. Volovik

All realistic second order phase transitions are undergone at finite transition rate and are therefore non-adiabatic. In symmetry-breaking phase transitions the non-adiabatic processes, as predicted by Kibble and Zurek [1, 2], lead to the formation of topological defects (the so-called Kibble-Zurek mechanism). The exact nature of the resultingdefects depends on the detailed symmetry-breaking pattern.

2017 ◽  
Vol 32 (15) ◽  
pp. 1740001 ◽  
Author(s):  
Maxim Yu. Khlopov

In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.


Author(s):  
Wojciech H Zurek ◽  
Uwe Dorner

We extend the theory of symmetry-breaking dynamics in non-equilibrium second-order phase transitions known as the Kibble–Zurek mechanism (KZM) to transitions where the change of phase occurs not in time but in space. This can be due to a time-independent spatial variation of a field that imposes a phase with one symmetry to the left of where it attains critical value, while allowing spontaneous symmetry breaking to the right of that critical borderline. Topological defects need not form in such a situation. We show, however, that the size, in space, of the ‘scar’ over which the order parameter adjusts as it ‘bends’ interpolating between the phases with different symmetries follows from a KZM-like approach. As we illustrate on the example of a transverse quantum Ising model, in quantum phase transitions this spatial scale—the size of the scar—is directly reflected in the energy spectrum of the system: in particular, it determines the size of the energy gap.


Author(s):  
Fabrizio Minganti ◽  
Ievgen Arkhipov ◽  
Adam Miranowicz ◽  
Franco Nori

Abstract The paradigm of second-order phase transitions (PTs) induced by spontaneous symmetry breaking (SSB) in thermal and quantum systems is a pillar of modern physics that has been fruitfully applied to out-of-equilibrium open quantum systems. Dissipative phase transitions (DPTs) of second order are often connected with SSB, in close analogy with well-known thermal second-order PTs in closed quantum and classical systems. That is, a second-order DPT should disappear by preventing the occurrence of SSB. Here, we prove this statement to be wrong, showing that, surprisingly, SSB is not a necessary condition for the occurrence of second-order DPTs in \textit{out-of-equilibrium open quantum systems}. We analytically prove this result using the Liouvillian theory of dissipative phase transitions, and demonstrate this anomalous transition in two exemplary models: a paradigmatic laser model, where we can arbitrarily remove SSB while retaining criticality, and a $Z_2$-symmetric model of a two-photon Kerr resonator.


Sign in / Sign up

Export Citation Format

Share Document