The Future of Real-Time and Embedded Computing Systems

Author(s):  
Borko Furht ◽  
Wolfgang A. Halang
2013 ◽  
pp. 140-159
Author(s):  
Giorgio C. Buttazzo

The number of computer-controlled systems has increased dramatically in our daily life. Processors and microcontrollers are embedded in most of the devices we use every day, such as mobile phones, cameras, media players, navigators, washing machines, biomedical devices, and cars. The complexity of such systems is increasing exponentially, pushed by the demand of new products with extra functionality, higher performance requirements, and low energy consumption. To cope with such a complex scenario, many embedded systems are adopting more powerful and highly integrated hardware components, such as multi-core systems, network-on-chip architectures, inertial subsystems, and special purpose co-processors. However, developing, analyzing, and testing the application software on these architectures is not easy, and new methodologies are being investigated in the research community to guarantee high predictability and efficiency in next generation embedded devices. This chapter presents some recent approaches proposed within the real-time research community aimed at achieving predictability, high modularity, efficiency, and adaptability in modern embedded computing systems.


2013 ◽  
Vol 39 (5) ◽  
pp. 242-254 ◽  
Author(s):  
R. L. Smelyansky ◽  
A. G. Bakhmurov ◽  
D. Yu. Volkanov ◽  
E. V. Chemeritskii

2021 ◽  
pp. 147612702110120
Author(s):  
Siavash Alimadadi ◽  
Andrew Davies ◽  
Fredrik Tell

Research on the strategic organization of time often assumes that collective efforts are motivated by and oriented toward achieving desirable, although not necessarily well-defined, future states. In situations surrounded by uncertainty where work has to proceed urgently to avoid an impending disaster, however, temporal work is guided by engaging with both desirable and undesirable future outcomes. Drawing on a real-time, in-depth study of the inception of the Restoration and Renewal program of the Palace of Westminster, we investigate how organizational actors develop a strategy for an uncertain and highly contested future while safeguarding ongoing operations in the present and preserving the heritage of the past. Anticipation of undesirable future events played a crucial role in mobilizing collective efforts to move forward. We develop a model of future desirability in temporal work to identify how actors construct, link, and navigate interpretations of desirable and undesirable futures in their attempts to create a viable path of action. By conceptualizing temporal work based on the phenomenological quality of the future, we advance understanding of the strategic organization of time in pluralistic contexts characterized by uncertainty and urgency.


2015 ◽  
Vol 14 (3) ◽  
pp. 1-18 ◽  
Author(s):  
Aydin Aysu ◽  
Bilgiday Yuce ◽  
Patrick Schaumont
Keyword(s):  

2021 ◽  
Author(s):  
Wael Fares ◽  
Islam Moustafa ◽  
Ali Al Felasi ◽  
Hocine Khemissa ◽  
Omar Al Mutwali ◽  
...  

Abstract The high reservoir uncertainty, due to the lateral distribution of fluids, results in variable water saturation, which is very challenging in drilling horizontal wells. In order to reduce uncertainty, the plan was to drill a pilot hole to evaluate the target zones and plan horizontal sections based on the information gained. To investigate the possibility of avoiding pilot holes in the future, an advanced ultra-deep resistivity mapping sensor was deployed to map the mature reservoirs, to identify formation and fluid boundaries early before penetrating them, avoiding the need for pilot holes. Prewell inversion modeling was conducted to optimize the spacing and firing frequency selection and to facilitate an early real-time geostopping decision. The plan was to run the ultra-deep resistivity mapping sensor in conjunction with shallow propagation resistivity, density, and neutron porosity tools while drilling the 8 ½-in. landing section. The real-time ultra-deep resistivity mapping inversion was run using a depth of inversion up to 120 ft., to be able to detect the reservoir early and evaluate the predicted reservoir resistivity. This would allow optimization of any geostopping decision. The ultra-deep resistivity mapping sensor delivered accurate mapping of low resistivity zones up to 85 ft. TVD away from the wellbore in a challenging low resistivity environment. The real-time ultra-deep resistivity mapping inversion enabled the prediction of resistivity values in target zones prior to entering the reservoir; values which were later crosschecked against open-hole logs for validation. The results enabled identification of the optimal geostopping point in the 8 ½-in. section, enabling up to seven rig days to be saved in the future by eliminating a pilot hole. In addition this would eliminate the risk of setting a whipstock at high inclination with the subsequent impact on milling operations. In specific cases, this minimizes drilling risks in unknown/high reservoir pressure zones by improving early detection of formation tops. Plans were modified for a nearby future well and the pilot-hole phase was eliminated because of the confidence provided by these results. Deployment of the ultra-deep resistivity mapping sensor in these mature carbonate reservoirs may reduce the uncertainty associated with fluid migration. In addition, use of the tool can facilitate precise geosteering to maintain distance from fluid boundaries in thick reservoirs. Furthermore, due to the depths of investigation possible with these tools, it will help enable the mapping of nearby reservoirs for future development. Further multi-disciplinary studies remain desirable using existing standard log data to validate the effectiveness of this concept for different fields and reservoirs.


Sign in / Sign up

Export Citation Format

Share Document