GENERALIZED DIFFERENTIAL EQUATIONS AND OTHER CONCEPTS OF DIFFERENTIAL SYSTEMS


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Shyam Sundar Santra ◽  
Apurba Ghosh ◽  
Omar Bazighifan ◽  
Khaled Mohamed Khedher ◽  
Taher A. Nofal

AbstractIn this work, we present new necessary and sufficient conditions for the oscillation of a class of second-order neutral delay impulsive differential equations. Our oscillation results complement, simplify and improve recent results on oscillation theory of this type of nonlinear neutral impulsive differential equations that appear in the literature. An example is provided to illustrate the value of the main results.



Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 934
Author(s):  
Shyam Sundar Santra ◽  
Khaled Mohamed Khedher ◽  
Kamsing Nonlaopon ◽  
Hijaz Ahmad

The oscillation of impulsive differential equations plays an important role in many applications in physics, biology and engineering. The symmetry helps to deciding the right way to study oscillatory behavior of solutions of impulsive differential equations. In this work, several sufficient conditions are established for oscillatory or asymptotic behavior of second-order neutral impulsive differential systems for various ranges of the bounded neutral coefficient under the canonical and non-canonical conditions. Here, one can see that if the differential equations is oscillatory (or converges to zero asymptotically), then the discrete equation of similar type do not disturb the oscillatory or asymptotic behavior of the impulsive system, when impulse satisfies the discrete equation. Further, some illustrative examples showing applicability of the new results are included.



2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Jifeng Chu ◽  
Juntao Sun ◽  
Patricia J. Y. Wong

We present a survey on the existence of periodic solutions of singular differential equations. In particular, we pay our attention to singular scalar differential equations, singular damped differential equations, singular impulsive differential equations, and singular differential systems.



Author(s):  
T. R. Blows ◽  
N. G. Lloyd

SynopsisTwo-dimensional differential systemsare considered, where P and Q are polynomials. The question of interest is the maximum possible numberof limit cycles of such systems in terms of the degree of P and Q. An algorithm is described for determining a so-called focal basis; this can be implemented on a computer. Estimates can then be obtained for the number of small-amplitude limit cycles. The technique is applied to certain cubic systems; a class of examples with exactly five small-amplitude limit cycles is constructed. Quadratic systems are also considered.



2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mohammed M. Matar ◽  
Esmail S. Abu Skhail

We study the Mittag-Leffler and class-K function stability of fractional differential equations with order α∈(1,2). We also investigate the comparison between two systems with Caputo and Riemann-Liouville derivatives. Two examples related to fractional-order Hopfield neural networks with constant external inputs and a marine protected area model are introduced to illustrate the applicability of stability results.



2019 ◽  
Vol 55 (1-2) ◽  
pp. 42-52
Author(s):  
Milad Ranjbaran ◽  
Rahman Seifi

This article proposes a new method for the analysis of free vibration of a cracked isotropic plate with various boundary conditions based on Kirchhoff’s theory. The isotropic plate is assumed to have a part-through surface or internal crack. The crack is considered parallel to one of the plate edges. Existence of the crack modified the governing differential equations which were formulated based on the line-spring model. Generalized differential quadrature method discretizes the obtained governing differential equations and converts them into an algebraic system of equations. Then, an eigenvalue analysis was used to determine the natural frequencies of the cracked plates. Some numerical results are given to demonstrate the accuracy and convergence of the obtained results. To demonstrate the efficiency of the method, the results were compared with finite element solutions and available literature. Also, effects of the crack depth, its location along the thickness, the length of the crack and different boundary conditions on the natural frequencies were investigated.



Sign in / Sign up

Export Citation Format

Share Document