Sub-Riemannian Geometry, Heisenberg Manifolds and Quantum Mechanics of Landau Levels

The paper is a continuation of the last paper communicated to these 'Proceedings.' In that paper, which we shall refer to as the first paper, a more general expression for space curvature was obtained than that which occurs in Riemannian geometry, by a modification of the Riemannian covariant derivative and by the use of a fifth co-ordinate. By means of a particular substitution (∆ μσ σ = 1/ψ ∂ψ/∂x μ ) it was shown that this curvature takes the form of the second order equation of quantum mechanics. It is not a matrix equation, however but one which has the character of the wave equation as it occurred in the earlier form of the quantum theory. But it contains additional terms, all of which can be readily accounted for in physics, expect on which suggested an identification with energy of the spin.


2017 ◽  
Vol 32 (02n03) ◽  
pp. 1750009 ◽  
Author(s):  
C. L. Ching ◽  
C. X. Yeo ◽  
W. K. Ng

In this paper, we examine the (2[Formula: see text]+[Formula: see text]1)-dimensional Dirac equation in a homogeneous magnetic field under the nonrelativistic anti-Snyder model which is relevant to doubly/deformed special relativity (DSR) since it exhibits an intrinsic upper bound of the momentum of free particles. After setting up the formalism, exact eigensolutions are derived in momentum space representation and they are expressed in terms of finite orthogonal Romanovski polynomials. There is a finite maximum number of allowable bound states [Formula: see text] due to the orthogonality of the polynomials and the maximum energy is truncated at [Formula: see text]. Similar to the minimal length case, the degeneracy of the Dirac–Landau levels in anti-Snyder model are modified and there are states that do not exist in the ordinary quantum mechanics limit [Formula: see text]. By taking [Formula: see text], we explore the motion of effective massless charged fermions in graphene-like material and obtained a maximum bound of deformed parameter [Formula: see text]. Furthermore, we consider the modified energy dispersion relations and its application in describing the behavior of neutrinos oscillation under modified commutation relations.


2018 ◽  
Vol 40 ◽  
pp. 58
Author(s):  
Fabio Silva Botelho

This article develops a variational formulation for  relativistic quantum mechanics. The main results are obtained through a connection between relativistic and quantum mechanics. Such a connection is established through basic concepts on Riemannian geometry and related extensions for the relativistic context.


2016 ◽  
Vol 31 (20n21) ◽  
pp. 1650117 ◽  
Author(s):  
Kazuki Hasebe

Noncommutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In the first half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac–Landau operator eigenstates is obtained based on algebraic methods. We establish [Formula: see text] “gauge” transformation between the relativistic Landau model and the Pauli–Schrödinger nonrelativistic quantum mechanics. After the [Formula: see text] transformation, the Dirac operator and the angular momentum operators are found to satisfy the [Formula: see text] algebra. In the second half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymmetric quantum mechanics as the square of the Dirac–Landau operator. Finally, we apply the level projection method to real graphene system to generate valley fuzzy spheres.


1993 ◽  
Vol 08 (03) ◽  
pp. 573-585 ◽  
Author(s):  
MATTHIAS BLAU ◽  
GEORGE THOMPSON

We rederive the recently introduced N=2 topological gauge theories, representing the Euler characteristic of moduli spaces ℳ of connections, from supersymmetric quantum mechanics on the infinite-dimensional spaces [Formula: see text] of gauge orbits. To that end we discuss variants of ordinary supersymmetric quantum mechanics which have meaningful extensions to infinite-dimensional target spaces, and introduce supersymmetric quantum mechanics actions modeling the Riemannian geometry of submersions and embeddings, relevant to the projections [Formula: see text] and inclusions [Formula: see text] respectively. We explain the relation between Donaldson theory and the gauge theory of flat connections in three dimensions and illustrate the general construction by other two- and four-dimensional examples.


Sign in / Sign up

Export Citation Format

Share Document