FAVORABLE HOT FUSION REACTION FOR SYNTHESIS OF NEW SUPERHEAVY NUCLIDE 272Ds

Author(s):  
ZU-HUA LIU ◽  
JING-DONG BAO
Keyword(s):  
2015 ◽  
Vol 11 (2) ◽  
pp. 2972-2978
Author(s):  
Fouad A. Majeed ◽  
Yousif A. Abdul-Hussien

In this study the calculations of the total fusion reaction cross section have been performed for fusion reaction systems 17F + 208Pb and 15C + 232Th which involving halo nuclei by using a semiclassical approach.The semiclassical treatment is comprising the WKB approximation to describe the relative motion between target and projectile nuclei, and Continuum Discretized Coupled Channel (CDCC) method to describe the intrinsic motion for both target and projectile nuclei. For the same of comparsion a full quantum mechanical clacualtions have been preforemd using the (CCFULL) code. Our theorticalrestuls are compared with the full quantum mechaincialcalcuations and with the recent experimental data for the total fusion reaction  checking the stability of the distancesThe coupled channel calculations of the total fusion cross section σfus, and the fusion barrier distribution Dfus. The comparsion with experiment proves that the semiclassiacl approach adopted in the present work reproduce the experimental data better that the full quantal mechanical calcautions. 


2021 ◽  
pp. 112712
Author(s):  
Kenichi Okutsu ◽  
Takuma Yamashita ◽  
Yasushi Kino ◽  
Ryota Nakashima ◽  
Konan Miyashita ◽  
...  

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Natsumi Ikeno ◽  
Raquel Molina ◽  
Eulogio Oset

Author(s):  
H. Jelger Risselada ◽  
Helmut Grubmüller

AbstractFusion proteins can play a versatile and involved role during all stages of the fusion reaction. Their roles go far beyond forcing the opposing membranes into close proximity to drive stalk formation and fusion. Molecular simulations have played a central role in providing a molecular understanding of how fusion proteins actively overcome the free energy barriers of the fusion reaction up to the expansion of the fusion pore. Unexpectedly, molecular simulations have revealed a preference of the biological fusion reaction to proceed through asymmetric pathways resulting in the formation of, e.g., a stalk-hole complex, rim-pore, or vertex pore. Force-field based molecular simulations are now able to directly resolve the minimum free-energy path in protein-mediated fusion as well as quantifying the free energies of formed reaction intermediates. Ongoing developments in Graphics Processing Units (GPUs), free energy calculations, and coarse-grained force-fields will soon gain additional insights into the diverse roles of fusion proteins.


2021 ◽  
Vol 77 (2) ◽  
pp. 88-97
Author(s):  
Bo Zeng ◽  
Zijia Zhao ◽  
Zhong Chen ◽  
Dongmei Pan ◽  
Zhongliang Lv ◽  
...  

2003 ◽  
Vol 77 (5) ◽  
pp. 2981-2989 ◽  
Author(s):  
Xinyong Zhang ◽  
Martin Fugère ◽  
Robert Day ◽  
Margaret Kielian

ABSTRACT The alphavirus Semliki Forest virus (SFV) infects cells via a low-pH-dependent membrane fusion reaction mediated by the E1 envelope protein. Fusion is regulated by the interaction of E1 with the receptor-binding protein E2. E2 is synthesized as a precursor termed “p62,” which forms a stable heterodimer with E1 and is processed late in the secretory pathway by a cellular furin-like protease. Once processing to E2 occurs, the E1/E2 heterodimer is destabilized so that it is more readily dissociated by exposure to low pH, allowing fusion and infection. We have used FD11 cells, a furin-deficient CHO cell line, to characterize the processing of p62 and its role in the control of virus fusion and infection. p62 was not cleaved in FD11 cells and cleavage was restored in FD11 cell transfectants expressing human furin. Studies of unprocessed virus produced in FD11 cells (wt/p62) demonstrated that the p62 protein was efficiently cleaved by purified furin in vitro, without requiring prior exposure to low pH. wt/p62 virus particles were also processed during their endocytic uptake in furin-containing cells, resulting in more efficient virus infection. wt/p62 virus was compared with mutant L, in which p62 cleavage was blocked by mutation of the furin-recognition motif. wt/p62 and mutant L had similar fusion properties, requiring a much lower pH than control virus to trigger fusion and fusogenic E1 conformational changes. However, the in vivo infectivity of mutant L was more strongly inhibited than that of wt/p62, due to additional effects of the mutation on virus-cell binding.


1998 ◽  
Vol 143 (2) ◽  
pp. 359-373 ◽  
Author(s):  
Greg J. Hermann ◽  
John W. Thatcher ◽  
John P. Mills ◽  
Karen G. Hales ◽  
Margaret T. Fuller ◽  
...  

Membrane fusion is required to establish the morphology and cellular distribution of the mitochondrial compartment. In Drosophila, mutations in the fuzzy onions (fzo) GTPase block a developmentally regulated mitochondrial fusion event during spermatogenesis. Here we report that the yeast orthologue of fuzzy onions, Fzo1p, plays a direct and conserved role in mitochondrial fusion. A conditional fzo1 mutation causes the mitochondrial reticulum to fragment and blocks mitochondrial fusion during yeast mating. Fzo1p is a mitochondrial integral membrane protein with its GTPase domain exposed to the cytoplasm. Point mutations that alter conserved residues in the GTPase domain do not affect Fzo1p localization but disrupt mitochondrial fusion. Suborganellar fractionation suggests that Fzo1p spans the outer and is tightly associated with the inner mitochondrial membrane. This topology may be required to coordinate the behavior of the two mitochondrial membranes during the fusion reaction. We propose that the fuzzy onions family of transmembrane GTPases act as molecular switches to regulate a key step in mitochondrial membrane docking and/or fusion.


Sign in / Sign up

Export Citation Format

Share Document