Evidencing ‘Tight Bound States’ in the Hydrogen Atom: Empirical Manipulation of Large-Scale XD in Violation of QED

Author(s):  
RICHARD L. AMOROSO ◽  
JEAN-PIERRE VIGIER
Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1323 ◽  
Author(s):  
G. Jordan Maclay

Understanding the hydrogen atom has been at the heart of modern physics. Exploring the symmetry of the most fundamental two body system has led to advances in atomic physics, quantum mechanics, quantum electrodynamics, and elementary particle physics. In this pedagogic review, we present an integrated treatment of the symmetries of the Schrodinger hydrogen atom, including the classical atom, the SO(4) degeneracy group, the non-invariance group or spectrum generating group SO(4,1), and the expanded group SO(4,2). After giving a brief history of these discoveries, most of which took place from 1935–1975, we focus on the physics of the hydrogen atom, providing a background discussion of the symmetries, providing explicit expressions for all of the manifestly Hermitian generators in terms of position and momenta operators in a Cartesian space, explaining the action of the generators on the basis states, and giving a unified treatment of the bound and continuum states in terms of eigenfunctions that have the same quantum numbers as the ordinary bound states. We present some new results from SO(4,2) group theory that are useful in a practical application, the computation of the first order Lamb shift in the hydrogen atom. By using SO(4,2) methods, we are able to obtain a generating function for the radiative shift for all levels. Students, non-experts, and the new generation of scientists may find the clearer, integrated presentation of the symmetries of the hydrogen atom helpful and illuminating. Experts will find new perspectives, even some surprises.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 322
Author(s):  
Zhengxiong Su ◽  
Sheng Wang ◽  
Chenyang Lu ◽  
Qing Peng

Hydrogen plays a significant role in the microstructure evolution and macroscopic deformation of materials, causing swelling and surface blistering to reduce service life. In the present work, the atomistic mechanisms of hydrogen bubble nucleation in vanadium were studied by first-principles calculations. The interstitial hydrogen atoms cannot form significant bound states with other hydrogen atoms in bulk vanadium, which explains the absence of hydrogen self-clustering from the experiments. To find the possible origin of hydrogen bubble in vanadium, we explored the minimum sizes of a vacancy cluster in vanadium for the formation of hydrogen molecule. We show that a freestanding hydrogen molecule can form and remain relatively stable in the center of a 54-hydrogen atom saturated 27-vacancy cluster.


2011 ◽  
Vol 26 (06) ◽  
pp. 935-945 ◽  
Author(s):  
O. W. GREENBERG

We describe a method of solving quantum field theories using operator techniques based on the expansion of interacting fields in terms of asymptotic fields. For bound states, we introduce an asymptotic field for each (stable) bound state. We choose the nonrelativistic hydrogen atom as an example to illustrate the method. Future work will apply this N-quantum approach to relativistic theories that include bound states in motion.


2021 ◽  
Author(s):  
Stuti Sharma ◽  
Ruoyu Zhou ◽  
Li Wan ◽  
Kangkang Song ◽  
Chen Xu ◽  
...  

Present in all bacteria, lipoproteins are central in bacterial growth and antibiotic resistance. These proteins use lipid acyl chains attached to the N-terminal cysteine residue to anchor on the outer surface of cytoplasmic membrane. In Gram-negative bacteria, many lipoproteins are transported to the outer membrane (OM), a process dependent on the ATP-binding cassette (ABC) transporter LolCDE which extracts the OM-targeted lipoproteins from the cytoplasmic membrane for subsequent trafficking across the periplasm. Lipid-anchored proteins pose a unique challenge for transport machinery as they have both hydrophobic lipid moieties and soluble protein component, and the underlying mechanism is poorly understood. Here we determined the cryo-EM structures of nanodisc-embedded LolCDE in the nucleotide-free and nucleotide-bound states at 3.8-Å and 3.5-Å resolution, respectively. The structural analyses, together with biochemical and mutagenesis studies, uncover how LolCDE specifically recognizes its substrate by establishing multiple interactions with the lipid and N-terminal peptide moieties of the lipoprotein, and identify the amide-linked acyl chain as the key element for LolCDE interaction. Upon nucleotide binding, the transmembrane helices and the periplasmic domains of LolCDE undergo large-scale, asymmetric movements, resulting in extrusion of the captured lipoprotein. Comparison of LolCDE and MacB reveals the conserved mechanism of type VII ABC transporters and emphasizes the unique properties of LolCDE as a molecule extruder of triacylated lipoproteins.


Sign in / Sign up

Export Citation Format

Share Document