Large Deflection of Ideal Pseudo-Elastic Shape Memory Alloy Cantilever Beam

Author(s):  
Shitang CUI ◽  
Liming HU ◽  
Jun YAN
2010 ◽  
Vol 132 (2) ◽  
Author(s):  
A. Banerjee ◽  
B. Bhattacharya ◽  
A. K. Mallik

For discrete actuation with shape memory alloy (SMA) wires, the actuation moment can be controlled by changing the amount of wire offset. Increasing offset not only enhances the actuating moment, but also demands larger displacement capability of the actuator. In this paper, large deflection of a cantilever beam actuated by a SMA wire has been investigated. Both the theoretical and experimental results reveal the existence of an optimum offset maximizing the end deflection. The optimum offset depends on the flexural stiffness of the beam, SMA wire properties, and the input actuation level.


Author(s):  
Saptarshi Karmakar ◽  
Nripen Kalita ◽  
Atanu Banerjee

Shape memory alloy wire actuators can be used in combination with compliant structures to attain desired force and displacement capabilities. The wires can be placed inside a matrix, as in composite, or outside the material connected at different points on the structure. In the latter case, the offset of the wire and the location of the points decides the overall deformation of the structure. In this article we study the effects of offset distance, and the number of points, called attachments, where the shape memory alloy wire is connected to a host beam. First the characteristic curve of the shape memory alloy wire actuator is derived from a constrained recovery model. Then the response of a beam model, undergoing large deflection due to follower forces, is superposed with the characteristic curve to obtain the maximum beam deformation. It is found that there exists a particular offset, called optimum offset, for which the deformation of the host is maximum. Moreover, the ratio of stress and change in strain in the shape memory alloy corresponding to the optimum offset, attains a particular value, irrespective of the flexural rigidities of the beam. Furthermore, it has been observed that for a set of beams that have flexural rigidity less than a particular value, the deformation increases with number of attachments. However, for the beams that have flexural rigidity more than that particular value, the deformation remains almost unaltered with number of attachments. These numerical results are also supported qualitatively by the experimental observations.


Author(s):  
Wael Zaki ◽  
N. V. Viet

Based on the ZM model for shape memory alloys, an analytical model is derived for a functionally graded material (FGM)/shape memory alloy (SMA) laminated composite cantilever beam subjected to concentrated force at the tip. The beam consists of a SMA core layer bonded to identical FGM layers on both sides. The FGM layer is considered to be elastic with an equivalent Young’s modulus related to those of the constituents by means of a power law. Phase transformation within the SMA layer is accounted for in deriving the analytical relations, which are validated against finite element analysis results.


2012 ◽  
Vol 226-228 ◽  
pp. 252-256
Author(s):  
Xin Yang ◽  
Jie Hong ◽  
Yan Hong Ma ◽  
Da Yi Zhang

The feasibility of using shape memory alloy (SMA) as actuators to control the vibration of a double-decker cantilever beam is demonstrated in the paper. A new and reliable form of SMA actuator is proposed in this study that no debonding and softening occurs even the maximum shear is generated by recovery force of the SMA wires. The magnitude and stability of the recovery force are tested when the SMA wires with the prestrain are heated cyclically. According to the simulation results, the four vibrational modes (three bending and one torsional) of cantilever beam can be changed simultaneously. Finally the vibrational response excited by pulsing and sinusoidal signal is successfully suppressed by using the SMA actuators in the experiments.


2011 ◽  
Vol 3 (2) ◽  
Author(s):  
A. Banerjee ◽  
B. Bhattacharya ◽  
A. K. Mallik

This paper presents forward and inverse analyses of the response of a compliant link actuated by a discretely attached shape memory alloy (SMA) wire subjected to a time-varying input voltage. The framework for a constrained recovery of the shape memory alloy wire is developed from a robust numerical model. The model for the large deflection of a beam element due to follower forces resulting from discrete actuation using a SMA wire is coupled with the proposed framework. Thus, the response of the link is correlated with the input voltage. The algorithm for implementing this framework has been demonstrated along with some numerical examples. Experiments have also been conducted on a SMA actuated cantilever beam, and the results are compared with those of the simulations. A qualitative agreement between the two is observed. It is concluded that the theoretical results can provide a reference signal for active control of the link to achieve higher accuracy.


Sign in / Sign up

Export Citation Format

Share Document