scholarly journals RIEMANNIAN GEOMETRICAL OPTICS: SURFACE WAVES IN DIFFRACTIVE SCATTERING

2000 ◽  
Vol 12 (06) ◽  
pp. 849-872 ◽  
Author(s):  
E. DE MICHELI ◽  
G. MONTI BRAGADIN ◽  
G. A. VIANO

The geometrical diffraction theory, in the sense of Keller, is here reconsidered as an obstacle problem in the Riemannian geometry. The first result is the proof of the existence and the analysis of the main properties of the "diffracted rays", which follow from the non-uniqueness of the Cauchy problem for geodesics in a Riemannian manifold with boundary. Then, the axial caustic is here regarded as a conjugate locus, in the sense of the Riemannian geometry, and the results of the Morse theory can be applied. The methods of the algebraic topology allow us to introduce the homotopy classes of diffracted rays. These geometrical results are related to the asymptotic approximations of a solution of a boundary value problem for the reduced wave equation. In particular, we connect the results of the Morse theory to the Maslov construction, which is used to obtain the uniformization of the asymptotic approximations. Then, the border of the diffracting body is the envelope of the diffracted rays and, instead of the standard saddle point method, use is made of the procedure of Chester, Friedman and Ursell to derive the damping factors associated with the rays which propagate along the boundary. Finally, the amplitude of the diffracted rays when the diffracting body is an opaque sphere is explicitly calculated.

Author(s):  
German Almanza ◽  
Victor M. Carrillo ◽  
Cely C. Ronquillo

S. Smale published a paper where announce a theorem which optimize a several utility functions at once (cf. Smale, 1975) using Morse Theory, this is a very abstract subject that require high skills in Differential Topology and Algebraic Topology. Our goal in this paper is announce the same theorems in terms of Calculus of Manifolds and Linear Algebra, those subjects are more reachable to engineers and economists whom are concern with maximizing functions in several variables. Moreover, the elements involved in our theorems are accessible to graduate students, also we putting forward the results we consider economically relevant.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Cristina B. Corcino ◽  
Roberto B. Corcino ◽  
Jay M. Ontolan

Asymptotic approximations of Tangent polynomials, Tangent-Bernoulli, and Tangent-Genocchi polynomials are derived using saddle point method and the approximations are expressed in terms of hyperbolic functions. For each polynomial there are two approximations derived with one having enlarged region of validity.


1983 ◽  
Vol 35 (3) ◽  
pp. 385-416 ◽  
Author(s):  
P. H. H. Fantham ◽  
E. J. Moore

We are concerned in this paper with category-theoretic aspects of homotopy theory. Originally, category theory developed as a simplifying language in the context of algebraic topology and yet one primary example: the category Π of spaces and homotopy classes of maps admits only limited use of the language owing to the very sparse occurrence of limits. Of course, full use has been made of them nevertheless: limits and colimits exist in the case of products and coproducts, and in almost no other case; yet, from this we obtain the theory of Samelson products, Whitehead products, and Hopf invariants which can all be expressed in Π see [8]. In addition, there are hosts of adjoint functors and yet the outcome is disappointing because the language applies only to special cases rather than to the situation as a whole.


Author(s):  
Per Osland

This is a review of Glauber’s asymptotic diffraction theory, in which diffractive scattering is described in terms of interference between semiclassical amplitudes, resulting from a stationary-phase approximation. Typically two such amplitudes are sufficient to accurately describe elastic scattering, but the stationary points are located at complex values of the impact parameter. Their separation controls the interference pattern, and their offsets from the real axis determine the overall fall-off with momentum transfer. Asymptotically, at large momentum transfers, the stationary points move towards singularities of the profile function. I also include some reminiscences from our collaboration.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1039
Author(s):  
Susmit Bagchi

The fundamental groups and homotopy decompositions of algebraic topology have applications in systems involving symmetry breaking with topological excitations. The main aim of this paper is to analyze the properties of homotopy decompositions in quotient topological spaces depending on the connectedness of the space and the fundamental groups. This paper presents constructions and analysis of two varieties of homotopy decompositions depending on the variations in topological connectedness of decomposed subspaces. The proposed homotopy decomposition considers connected fundamental groups, where the homotopy equivalences are relaxed and the homeomorphisms between the fundamental groups are maintained. It is considered that one fundamental group is strictly homotopy equivalent to a set of 1-spheres on a plane and as a result it is homotopy rigid. The other fundamental group is topologically homeomorphic to the first one within the connected space and it is not homotopy rigid. The homotopy decompositions are analyzed in quotient topological spaces, where the base space and the quotient space are separable topological spaces. In specific cases, the decomposed quotient space symmetrically extends Sierpinski space with respect to origin. The connectedness of fundamental groups in the topological space is maintained by open curve embeddings without enforcing the conditions of homotopy classes on it. The extended decomposed quotient topological space preserves the trivial group structure of Sierpinski space.


2014 ◽  
Vol 06 (01) ◽  
pp. 27-74 ◽  
Author(s):  
P. Carrillo Rouse ◽  
J. M. Lescure ◽  
B. Monthubert

The main result of this paper is a new Atiyah–Singer type cohomological formula for the index of Fredholm pseudodifferential operators on a manifold with boundary. The nonlocality of the chosen boundary condition prevents us to apply directly the methods used by Atiyah and Singer in [4, 5]. However, by using the K-theory of C*-algebras associated to some groupoids, which generalizes the classical K-theory of spaces, we are able to understand the computation of the APS index using classic algebraic topology methods (K-theory and cohomology). As in the classic case of Atiyah–Singer ([4, 5]), we use an embedding into a Euclidean space to express the index as the integral of a true form on a true space, the integral being over a C∞-manifold called the singular normal bundle associated to the embedding. Our formula is based on a K-theoretical Atiyah–Patodi–Singer theorem for manifolds with boundary that is inspired by Connes' tangent groupoid approach, it is not a groupoid interpretation of the famous Atiyah–Patodi–Singer index theorem.


Author(s):  
R. H. Morriss ◽  
J. D. C. Peng ◽  
C. D. Melvin

Although dynamical diffraction theory was modified for electrons by Bethe in 1928, relatively few calculations have been carried out because of computational difficulties. Even fewer attempts have been made to correlate experimental data with theoretical calculations. The experimental conditions are indeed stringent - not only is a knowledge of crystal perfection, morphology, and orientation necessary, but other factors such as specimen contamination are important and must be carefully controlled. The experimental method of fine-focus convergent-beam electron diffraction has been successfully applied by Goodman and Lehmpfuhl to single crystals of MgO containing light atoms and more recently by Lynch to single crystalline (111) gold films which contain heavy atoms. In both experiments intensity distributions were calculated using the multislice method of n-beam diffraction theory. In order to obtain reasonable accuracy Lynch found it necessary to include 139 beams in the calculations for gold with all but 43 corresponding to beams out of the [111] zone.


Author(s):  
Joseph D. C. Peng

The relative intensities of the ED spots in a cross-grating pattern can be calculated using N-beam electron diffraction theory. The scattering matrix formulation of N-beam ED theory has been previously applied to imperfect microcrystals of gold containing stacking disorder (coherent twinning) in the (111) crystal plane. In the present experiment an effort has been made to grow single-crystalline, defect-free (111) gold films of a uniform and accurately know thickness using vacuum evaporation techniques. These represent stringent conditions to be met experimentally; however, if a meaningful comparison is to be made between theory and experiment, these factors must be carefully controlled. It is well-known that crystal morphology, perfection, and orientation each have pronounced effects on relative intensities in single crystals.The double evaporation method first suggested by Pashley was employed with some modifications. Oriented silver films of a thickness of about 1500Å were first grown by vacuum evaporation on freshly cleaved mica, with the substrate temperature at 285° C during evaporation with the deposition rate at 500-800Å/sec.


Author(s):  
J. M. Cowley ◽  
Sumio Iijima

The imaging of detailed structures of crystal lattices with 3 to 4Å resolution, given the correct conditions of microscope defocus and crystal orientation and thickness, has been used by Iijima (this conference) for the study of new types of crystal structures and the defects in known structures associated with fluctuations of stoichiometry. The image intensities may be computed using n-beam dynamical diffraction theory involving several hundred beams (Fejes, this conference). However it is still important to have a suitable approximation to provide an immediate rough estimate of contrast and an evaluation of the intuitive interpretation in terms of an amplitude object.For crystals 100 to 150Å thick containing moderately heavy atoms the phase changes of the electron wave vary by about 10 radians suggesting that the “optimum defocus” theory of amplitude contrast for thin phase objects due to Scherzer and others can not apply, although it does predict the right defocus for optimum imaging.


Author(s):  
W. Z. Chang ◽  
D. B. Wittry

Since Du Mond and Kirkpatrick first discussed the principle of a bent crystal spectrograph in 1930, curved single crystals have been widely utilized as spectrometric monochromators as well as diffractors for focusing x rays diverging from a point. Curved crystal diffraction theory predicts that the diffraction parameters - the rocking curve width w, and the peak reflection coefficient r of curved crystals will certainly deviate from those of their flat form. Due to a lack of curved crystal parameter data in current literature and the need for optimizing the choice of diffraction geometry and crystal materials for various applications, we have continued the investigation of our technique presented at the last conference. In the present abstract, we describe a more rigorous and quantitative procedure for measuring the parameters of curved crystals.The diffraction image of a singly bent crystal under study can be obtained by using the Johann geometry with an x-ray point source.


Sign in / Sign up

Export Citation Format

Share Document