scholarly journals Commutativity, comonotonicity, and Choquet integration of self-adjoint operators

2018 ◽  
Vol 30 (10) ◽  
pp. 1850016 ◽  
Author(s):  
S. Cerreia-Vioglio ◽  
F. Maccheroni ◽  
M. Marinacci ◽  
L. Montrucchio

In this work, we propose a definition of comonotonicity for elements of [Formula: see text], i.e. bounded self-adjoint operators defined over a complex Hilbert space [Formula: see text]. We show that this notion of comonotonicity coincides with a form of commutativity. Intuitively, comonotonicity is to commutativity as monotonicity is to bounded variation. We also define a notion of Choquet expectation for elements of [Formula: see text] that generalizes quantum expectations. We characterize Choquet expectations as the real-valued functionals over [Formula: see text] which are comonotonic additive, [Formula: see text]-monotone, and normalized.

2019 ◽  
Vol 31 (04) ◽  
pp. 1950013 ◽  
Author(s):  
Valter Moretti ◽  
Marco Oppio

As earlier conjectured by several authors and much later established by Solèr, from the lattice-theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. On the other hand, no quantum systems seem to exist that are naturally described in a real or quaternionic Hilbert space. In a previous paper [23], we showed that any quantum system which is elementary from the viewpoint of the Poincaré symmetry group and it is initially described in a real Hilbert space, it can also be described within the standard complex Hilbert space framework. This complex description is unique and more precise than the real one as, for instance, in the complex description, all self-adjoint operators represent observables defined by the symmetry group. The complex picture fulfils the thesis of Solér’s theorem and permits the standard formulation of the quantum Noether’s theorem. The present work is devoted to investigate the remaining case, namely, the possibility of a description of a relativistic elementary quantum system in a quaternionic Hilbert space. Everything is done exploiting recent results of the quaternionic spectral theory that were independently developed. In the initial part of this work, we extend some results of group representation theory and von Neumann algebra theory from the real and complex cases to the quaternionic Hilbert space case. We prove the double commutant theorem also for quaternionic von Neumann algebras (whose proof requires a different procedure with respect to the real and complex cases) and we extend to the quaternionic case a result established in the previous paper concerning the classification of irreducible von Neumann algebras into three categories. In the second part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a quaternionic Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the quaternionic one, all self-adjoint operators represent observables in agreement with Solèr’s thesis, the standard quantum version of Noether theorem may be formulated and the notion of composite system may be given in terms of tensor product of elementary systems. In the third part of the paper, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the quantum system and we adopt a notion of continuity referred to the states viewed as probability measures on the elementary propositions. Also in this case, the final result proves that there exists a unique (up to sign) Poincaré invariant complex structure making the theory complex and completely fitting into Solèr’s picture. The overall conclusion is that relativistic elementary systems are naturally and better described in complex Hilbert spaces even if starting from a real or quaternionic Hilbert space formulation and this complex description is uniquely fixed by physics.


1969 ◽  
Vol 21 ◽  
pp. 1421-1426 ◽  
Author(s):  
Heydar Radjavi

The main result of this paper is that every normal operator on an infinitedimensional (complex) Hilbert space ℋ is the product of four self-adjoint operators; our Theorem 4 is an actually stronger result. A large class of normal operators will be given which cannot be expressed as the product of three self-adjoint operators.This work was motivated by a well-known resul t of Halmos and Kakutani (3) that every unitary operator on ℋ is the product of four symmetries, i.e., operators that are self-adjoint and unitary.1. By “operator” we shall mean bounded linear operator. The space ℋ will be infinite-dimensional (separable or non-separable) unless otherwise specified. We shall denote the class of self-adjoint operators on ℋ by and that of symmetries by .


2018 ◽  
Vol 1 (1) ◽  
pp. 60
Author(s):  
Razis Aji Saputro ◽  
Susilo Hariyanto ◽  
Y.D. Sumanto

Pre-Hilbert space is a vector space equipped with an inner-product. Furthermore, if each Cauchy sequence in a pre-Hilbert space is convergent then it can be said complete and it called as Hilbert space. The accretive operator is a linear operator in a Hilbert space. Accretive operator is occurred if the real part of the corresponding inner product will be equal to zero or positive. Accretive operators are also associated with non-negative self-adjoint operators. Thus, an accretive operator is said to be strict if there is a positive number such that the real part of the inner product will be greater than or equal to that number times to the squared norm value of any vector in the corresponding Hilbert Space. In this paper, we prove that a strict accretive operator is an accretive operator.


Filomat ◽  
2018 ◽  
Vol 32 (18) ◽  
pp. 6465-6474 ◽  
Author(s):  
Khalid Shebrawi ◽  
Mojtaba Bakherad

Let A be an operator with the polar decomposition A = U|A|. The Aluthge transform of the operator A, denoted by ?, is defined as ? = |A|1/2U |A|1/2. In this paper, first we generalize the definition of Aluthge transformfor non-negative continuous functions f,g such that f(x)g(x) = x (x ? 0). Then, by using this definition, we get some numerical radius inequalities. Among other inequalities, it is shown that if A is bounded linear operator on a complex Hilbert space H, then h (w(A)) ? 1/4||h(g2 (|A|)) + h(f2(|A|)|| + 1/2h (w(? f,g)), where f,g are non-negative continuous functions such that f(x)g(x) = x (x ? 0), h is a non-negative and non-decreasing convex function on [0,?) and ? f,g = f (|A|)Ug(|A|).


1969 ◽  
Vol 21 ◽  
pp. 505-512 ◽  
Author(s):  
J. G. Stampfli

I. In the first part of this paper we introduce a new class of operators, mentioned in the title. It is easy to say that these are a generalization of self-adjoint operators for Hilbert space. This is deceptive since it implies that the definition of self-adjointness is forced into the unnatural setting of a Banach space. We feel that the definition of adjoint abelian preserves the obvious distinction between a space and its dual. Certain attractive properties of self-adjoint operators have already been singled out and carried over to Banach space. Specifically, we mention the notion of hermitian (see 17; 11), and spectral type operators (see 4). There is some comparison of these concepts later.


2017 ◽  
Vol 29 (06) ◽  
pp. 1750021 ◽  
Author(s):  
Valter Moretti ◽  
Marco Oppio

As earlier conjectured by several authors and much later established by Solèr (relying on partial results by Piron, Maeda–Maeda and other authors), from the lattice theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. Stückelberg provided some physical, but not mathematically rigorous, reasons for ruling out the real Hilbert space formulation, assuming that any formulation should encompass a statement of Heisenberg principle. Focusing on this issue from another — in our opinion, deeper — viewpoint, we argue that there is a general fundamental reason why elementary quantum systems are not described in real Hilbert spaces. It is their basic symmetry group. In the first part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a real Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the real one, all selfadjoint operators represent observables in accordance with Solèr’s thesis, and the standard quantum version of Noether theorem may be formulated. In the second part of this work, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the quantum system and we adopt a notion of continuity referred to the states viewed as probability measures on the elementary propositions. Also in this case, the final result proves that there exists a unique (up to sign) Poincaré invariant complex structure making the theory complex and completely fitting into Solèr’s picture. This complex structure reveals a nice interplay of Poincaré symmetry and the classification of the commutant of irreducible real von Neumann algebras.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1918
Author(s):  
Oleh Lopushansky ◽  
Renata Tłuczek-Piȩciak

The paper describes approximations properties of monotonically increasing sequences of invariant subspaces of a self-adjoint operator, as well as their symmetric generalizations in a complex Hilbert space, generated by its positive powers. It is established that the operator keeps its spectrum over the dense union of these subspaces, equipped with quasi-norms, and that it is contractive. The main result is an inequality that provides an accurate estimate of errors for the best approximations in Hilbert spaces by these invariant subspaces.


1958 ◽  
Vol 4 (1) ◽  
pp. 1-2 ◽  
Author(s):  
C. R. Putnam

All operators considered in this paper are bounded and linear (everywhere defined) on a Hilbert space. An operator A will be called a square root of an operator B ifA simple sufficient condition guaranteeing that any solution A of (1) be normal whenever B is normal was obtained in [1], namely: If B is normal and if there exists some real angle θ for which Re(Aeιθ)≥0, then (1) implies that A is normal. Here, Re (C) denotes the real part ½(C + C*) of an operator C.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Mark Pankov ◽  
Krzysztof Petelczyc ◽  
Mariusz Źynel

Let $H$ be a complex Hilbert space. Consider the ortho-Grassmann graph $\Gamma^{\perp}_{k}(H)$ whose vertices are $k$-dimensional subspaces of $H$ (projections of rank $k$) and two subspaces are connected by an edge in this graph if they are compatible and adjacent (the corresponding rank-$k$ projections commute and their difference is an operator of rank $2$). Our main result is the following: if $\dim H\ne 2k$, then every automorphism of $\Gamma^{\perp}_{k}(H)$ is induced by a unitary or anti-unitary operator; if $\dim H=2k\ge 6$, then every automorphism of $\Gamma^{\perp}_{k}(H)$ is induced by a unitary or anti-unitary operator or it is the composition of such an automorphism and the orthocomplementary map. For the case when $\dim H=2k=4$ the statement fails. To prove this statement we compare geodesics of length two in ortho-Grassmann graphs and characterise compatibility (commutativity) in terms of geodesics in Grassmann and ortho-Grassmann graphs. At the end, we extend this result on generalised ortho-Grassmann graphs associated to conjugacy classes of finite-rank self-adjoint operators.


Real Hilbert space is a Euclidean space of infinite dimensionality. Complex Hilbert space is less amenable to elementary geometrical intuitions, but these do serve to give structure to the present argument. The familiar process of finding, relative to a vector x , the expectation Ā of a self-adjoint linear operator A , and then using the deviation A — Ā to obtain a dispersion Δ A , may be interpreted as a projection leading to a unit vector e orthogonal to x . If we have n self-adjoint operators A r , we thus form n unit vectors e r orthogonal to x . From a basic property of Hilbert space, the vector c 1 e 1 + c 2 e 2 + ... + c n e n has a non-negative norm for arbitrary complex coefficients. This demands the positive-indefinite character of a real quadratic form in 2 n variables; equivalently, all its eigenvalues must be non-negative. This leads to inequalities on the dispersions Δ A r , the expectations of the commutators i[ A r , A s ] and other expectations. For n = 2, this process leads to Schrödinger’s improvement of the Heisenberg inequality. The case n = 3 is here worked out explicitly.


Sign in / Sign up

Export Citation Format

Share Document