poincaré symmetry
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
pp. 197-204
Author(s):  
Manousos Markoutsakis
Keyword(s):  

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Joaquim Gomis ◽  
Euihun Joung ◽  
Axel Kleinschmidt ◽  
Karapet Mkrtchyan

Abstract We construct a generalisation of the three-dimensional Poincaré algebra that also includes a colour symmetry factor. This algebra can be used to define coloured Poincaré gravity in three space-time dimensions as well as to study generalisations of massive and massless free particle models. We present various such generalised particle models that differ in which orbits of the coloured Poincaré symmetry are described. Our approach can be seen as a stepping stone towards the description of particles interacting with a non-abelian background field or as a starting point for a worldline formulation of an associated quantum field theory.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Sudarshan Ananth ◽  
Lars Brink ◽  
Sucheta Majumdar

Abstract We analyze possible local extensions of the Poincaré symmetry in light-cone gravity in four dimensions. We use a formalism where we represent the algebra on the two physical degrees of freedom, one with helicity 2 and the other with helicity −2. The representation is non-linearly realized and one of the light-cone momenta is the Hamiltonian, which is hence a non-linear generator of the algebra. We find that this can be locally realized and the Poincaré algebra extended to the BMS symmetry without any reference to asymptotic limits.


2021 ◽  
pp. 2150181
Author(s):  
Tian-Chi Ma ◽  
Jing-Nan Hu ◽  
Yuan Chen ◽  
Lei Shao ◽  
Xian-Ru Hu ◽  
...  

Relativistic massless Weyl and Dirac fermions have isotropic and linear dispersion relations to maintain Poincaré symmetry, which is the most basic symmetry in high-energy physics. The situation in condensed matter physics is less constrained; only certain subgroups of Poincaré symmetry — the 230 space groups that exist in 3D lattices — need be respected. Then, the free fermionic excitations that have no high-energy analogues could exist in solid state systems. Here, We discovered a type of nonlinear Dirac fermion without high-energy analogue in SrAgBi and named it type-IV Dirac fermion. The type-IV Dirac fermion has a nonlinear dispersion relationship and is similar to the type-II Dirac fermion, which has electron pocket and hole pocket. The effective model for the type-IV Dirac fermion is also found. It is worth pointing out that there is a type-II Dirac fermion near this new Dirac fermion. So we used two models to describe the coexistence of these two Dirac fermions. Topological surface states of these two Dirac points are also calculated. We envision that our findings will stimulate researchers to study novel physics of type-IV Dirac fermions, as well as the interplay of type-II and type-IV Dirac fermions.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Andrea Barducci ◽  
Roberto Casalbuoni ◽  
Joaquim Gomis

AbstractStarting from the coadjoint Poincaré algebra we construct a point particle relativistic model with an interpretation in terms of extra-dimensional variables. The starting coadjoint Poincaré algebra is able to induce a mechanism of dimensional reduction between the usual coordinates of the Minkowski space and the extra-dimensional variables which turn out to form an antisymmetric tensor under the Lorentz group. Analysing the dynamics of this model, we find that, in a particular limit, it is possible to integrate out the extra variables and determine their effect on the dynamics of the material point in the usual space time. The model describes a particle in D dimensions subject to a harmonic motion when one of the parameters of the model is negative. The result can be interpreted as a modification to the flat Minkowski metric with non trivial Riemann, Ricci tensors and scalar curvature.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Clay Cordova ◽  
Daniel Freed ◽  
Ho Tat Lam ◽  
Nathan Seiberg

It is customary to couple a quantum system to external classical fields. One application is to couple the global symmetries of the system (including the Poincaré symmetry) to background gauge fields (and a metric for the Poincaré symmetry). Failure of gauge invariance of the partition function under gauge transformations of these fields reflects ’t Hooft anomalies. It is also common to view the ordinary (scalar) coupling constants as background fields, i.e. to study the theory when they are spacetime dependent. We will show that the notion of ’t Hooft anomalies can be extended naturally to include these scalar background fields. Just as ordinary ’t Hooft anomalies allow us to deduce dynamical consequences about the phases of the theory and its defects, the same is true for these generalized ’t Hooft anomalies. Specifically, since the coupling constants vary, we can learn that certain phase transitions must be present. We will demonstrate these anomalies and their applications in simple pedagogical examples in one dimension (quantum mechanics) and in some two, three, and four-dimensional quantum field theories. An anomaly is an example of an invertible field theory, which can be described as an object in (generalized) differential cohomology. We give an introduction to this perspective. Also, we use Quillen’s superconnections to derive the anomaly for a free spinor field with variable mass. In a companion paper we will study four-dimensional gauge theories showing how our view unifies and extends many recently obtained results.


Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 127 ◽  
Author(s):  
Yuri N. Obukhov

In the framework of the gauge theory based on the Poincaré symmetry group, the gravitational field is described in terms of the coframe and the local Lorentz connection. Considered as gauge field potentials, they give rise to the corresponding field strength which are naturally identified with the torsion and the curvature on the Riemann–Cartan spacetime. We study the class of quadratic Poincaré gauge gravity models with the most general Yang–Mills type Lagrangian which contains all possible parity-even and parity-odd invariants built from the torsion and the curvature. Exact vacuum solutions of the gravitational field equations are constructed as a certain deformation of de Sitter geometry. They are black holes with nontrivial torsion.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 409 ◽  
Author(s):  
Sibel Başkal ◽  
Young Kim ◽  
Marilyn Noz

It is noted that the single-variable Heisenberg commutation relation contains the symmetry of the S p ( 2 ) group which is isomorphic to the Lorentz group applicable to one time-like dimension and two space-like dimensions, known as the S O ( 2 , 1 ) group. According to Paul A. M. Dirac, from the uncertainty commutation relations for two variables, it possible to construct the de Sitter group S O ( 3 , 2 ) , namely the Lorentz group applicable to three space-like variables and two time-like variables. By contracting one of the time-like variables in S O ( 3 , 2 ) , it is possible to construct the inhomogeneous Lorentz group I S O ( 3 , 1 ) which serves as the fundamental symmetry group for quantum mechanics and quantum field theory in the Lorentz-covariant world. This I S O ( 3 , 1 ) group is commonly known as the Poincaré group.


Universe ◽  
2018 ◽  
Vol 4 (12) ◽  
pp. 139 ◽  
Author(s):  
Iarley P. Lobo ◽  
Michele Ronco

Hypersurface deformation algebra consists of a fruitful approach to derive deformedsolutions of general relativity based on symmetry considerations with quantum-gravity effects,of which the linearization has been recently demonstrated to be connected to the DSR programby k-Poincaré symmetry. Based on this approach, we analyzed the solution derived for theinterior of a black hole and we found similarities with the so-called rainbow metrics, like amomentum-dependence of the metric functions. Moreover, we derived an effective, time-dependentPlanck length and compared different regularization schemes.


2017 ◽  
Vol 32 (36) ◽  
pp. 1750199 ◽  
Author(s):  
A. A. Zheltukhin

Mapping of fundamental branes to their worldsheet (ws) multiplets originating from spontaneous breaking of the Poincaré symmetry is studied. The interaction Lagrangian for fields of the Nambu–Goldstone multiplet is shown to encode [Formula: see text] gravity on the ws. The power law [Formula: see text] for the [Formula: see text] gauge coupling [Formula: see text] as the function of the [Formula: see text]-brane tension [Formula: see text] is assumed. It points to the presence of asymptotic freedom and confinement phases in brane matter. Their connection with collapse and inflation of the branes is discussed.


Sign in / Sign up

Export Citation Format

Share Document