PROBABILITY MEASURES ON PROJECTIONS IN VON NEUMANN ALGEBRAS

1989 ◽  
Vol 01 (02n03) ◽  
pp. 235-290 ◽  
Author(s):  
SHUICHIRO MAEDA

A state ϕ on a von Neumann algebra A is a positive linear functional on A with ϕ(1) = 1, and the restriction of ϕ to the set of projections in A is a finitely additive probability measure. Recently it was proved that if A has no type I 2 summand then every finitely additive probability measure on projections can be extended to a state on A. Here we give precise and complete arguments for proving this result.

2011 ◽  
Vol 13 (04) ◽  
pp. 643-657 ◽  
Author(s):  
S. ALBEVERIO ◽  
SH. A. AYUPOV ◽  
K. K. KUDAYBERGENOV ◽  
B. O. NURJANOV

The paper is devoted to local derivations on the algebra [Formula: see text] of τ-measurable operators affiliated with a von Neumann algebra [Formula: see text] and a faithful normal semi-finite trace τ. We prove that every local derivation on [Formula: see text] which is continuous in the measure topology, is in fact a derivation. In the particular case of type I von Neumann algebras, they all are inner derivations. It is proved that for type I finite von Neumann algebras without an abelian direct summand, and also for von Neumann algebras with the atomic lattice of projections, the continuity condition on local derivations in the above results is redundant. Finally we give necessary and sufficient conditions on a commutative von Neumann algebra [Formula: see text] for the algebra [Formula: see text] to admit local derivations which are not derivations.


Author(s):  
SERGIO ALBEVERIO ◽  
DEBASHISH GOSWAMI

We study the structure of the generator of a symmetric, conservative quantum dynamical semigroup with norm-bounded generator on a von Neumann algebra equipped with a faithful semifinite trace. For von Neumann algebras with Abelian commutant (i.e. type I von Neumann algebras), we give a necessary and sufficient algebraic condition for the generator of such a semigroup to be written as a sum of square of self-adjoint derivations of the von Neumann algebra. This generalizes some of the results obtained by Albeverio, Høegh-Krohn and Olsen1 for the special case of the finite-dimensional matrix algebras. We also study similar questions for a class of quantum dynamical semigroups with unbounded generators.


1960 ◽  
Vol 3 (3) ◽  
pp. 273-288 ◽  
Author(s):  
Israel Halperin

What is a von Neumann algebra? What is a factor (i) of type I, (ii) of type II, (iii) of type III? What is a projection geometry? And finally, what is a continuous geometry?The questions recall some of the most brilliant mathematical work of the past 30 years, work which was done by John von Neumann, partly in collaboration with F. J. Murray, and which grew out of von Neumann1 s analysis of linear operators in Hilbert space.


1981 ◽  
Vol 33 (6) ◽  
pp. 1319-1327 ◽  
Author(s):  
A. Katavolos

1. The central objects in integration theory can be considered to be an abelian Von Neumann algebra, L∞, of the measure space, together with a (not necessarily finite-valued) positive linear functional on it, the integral (see [10]). It is natural, therefore, to attempt to construct a “non-commutative” integration theory starting with a non-abelian Von Neumann algebra. Segal [9] and Dixmier [2] have developed such a theory, and constructed the Non-Commutative Lp spaces associated with a Von Neumann algebra M and a normal, faithful, semifinite trace (i.e. a unitarily invariant weight) t on M. They show that there exists a unique ultra-weakly dense *-ideal J of M such that t (extends to) a positive linear form on J . A generalisation of the Hölder inequality then shows that, for 1 ≦ p < ∞, the functionis a norm on J, denoted by || • ||p.


Author(s):  
B. V. RAJARAMA BHAT ◽  
R. SRINIVASAN

B. Tsirelson constructed an uncountable family of type III product systems of Hilbert spaces through the theory of Gaussian spaces, measure type spaces and "slightly colored noises", using techniques from probability theory. Here we take a purely functional analytic approach and try to have a better understanding of Tsireleson's construction and his examples. We prove an extension of Shale's theorem connecting symplectic group and Weyl representation. We show that the "Shale map" respects compositions (this settles an old conjecture of K. R. Parthasarathy8). Using this we associate a product system to a sum system. This construction includes the exponential product system of Arveson, as a trivial case, and the type III examples of Tsirelson. By associating a von Neumann algebra to every "elementary set" in [0, 1], in a much simpler and direct way, we arrive at the invariants of the product system introduced by Tsirelson, given in terms of the sum system. Then we introduce a notion of divisibility for a sum system, and prove that the examples of Tsirelson are divisible. It is shown that only type I and type III product systems arise out of divisible sum systems. Finally, we give a sufficient condition for a divisible sum system to give rise to a unitless (type III) product system.


2008 ◽  
Vol 19 (04) ◽  
pp. 481-501 ◽  
Author(s):  
TETSUO HARADA ◽  
HIDEKI KOSAKI

Let τ be a faithful semi-finite normal trace on a semi-finite von Neumann algebra, and f(t) be a convex function with f(0) = 0. The trace Jensen inequality states τ(f(a* xa)) ≤ τ(a* f(x)a) for a contraction a and a self-adjoint operator x. Under certain strict convexity assumption on f(t), we will study when this inequality reduces to the equality.


2006 ◽  
Vol 58 (4) ◽  
pp. 768-795 ◽  
Author(s):  
Zhiguo Hu ◽  
Matthias Neufang

AbstractThe decomposability number of a von Neumann algebra ℳ (denoted by dec(ℳ)) is the greatest cardinality of a family of pairwise orthogonal non-zero projections in ℳ. In this paper, we explore the close connection between dec(ℳ) and the cardinal level of the Mazur property for the predual ℳ* of ℳ, the study of which was initiated by the second author. Here, our main focus is on those von Neumann algebras whose preduals constitute such important Banach algebras on a locally compact group G as the group algebra L1(G), the Fourier algebra A(G), the measure algebra M(G), the algebra LUC(G)*, etc. We show that for any of these von Neumann algebras, say ℳ, the cardinal number dec(ℳ) and a certain cardinal level of the Mazur property of ℳ* are completely encoded in the underlying group structure. In fact, they can be expressed precisely by two dual cardinal invariants of G: the compact covering number κ(G) of G and the least cardinality ᙭(G) of an open basis at the identity of G. We also present an application of the Mazur property of higher level to the topological centre problem for the Banach algebra A(G)**.


2018 ◽  
Vol 68 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Fangfang Zhao ◽  
Changjing Li

AbstractLetB(H) be the algebra of all bounded linear operators on a complex Hilbert spaceHand 𝓐 ⊆B(H) be a von Neumann algebra with no central summands of typeI1. ForA,B∈ 𝓐, define byA∙B=AB+BA∗a new product ofAandB. In this article, it is proved that a map Φ: 𝓐 →B(H) satisfies Φ(A∙B∙C) = Φ(A) ∙B∙C+A∙ Φ(B) ∙C+A∙B∙Φ(C) for allA,B,C∈ 𝓐 if and only if Φ is an additive *-derivation.


Sign in / Sign up

Export Citation Format

Share Document