Quantizations of Flag Manifolds and Conformal Space Time

1997 ◽  
Vol 09 (04) ◽  
pp. 453-465 ◽  
Author(s):  
R. Fioresi

In this paper we work out the deformations of some flag manifolds and of complex Minkowski space viewed as an affine big cell inside G(2,4). All the deformations come in tandem with a coaction of the appropriate quantum group. In the case of the Minkowski space this allows us to define the quantum conformal group. We also give two involutions on the quantum complex Minkowski space, that respectively define the real Minkowski space and the real euclidean space. We also compute the quantum De Rham complex for both real (complex) Minkowski and euclidean space.

1971 ◽  
Vol 23 (2) ◽  
pp. 315-324 ◽  
Author(s):  
A. McD. Mercer

1. If f is a real-valued function possessing a Taylor series convergent in (a — R, a + R), then it satisfies the following operational identity1.1in which D2 = d2/du2. Furthermore, when g is a solution of y″ + λ2y = 0 in (a – R, a + R), then g is such a function and (1.1) specializes to1.2In this note we generalize these results to the real Euclidean space EN, our conclusions being Theorems 1 and 2 below. Clearly, (1.2) is a special case of (1.1) but in higher-dimensional space it is of interest to allow g, now a solution of1.3to possess singularities at isolated points away from the origin. It is then necessary to consider not only a neighbourhood of the origin but annular regions also.


2006 ◽  
Vol 305 (2) ◽  
pp. 704-741 ◽  
Author(s):  
István Heckenberger ◽  
Stefan Kolb

2018 ◽  
Vol 58 (6) ◽  
pp. 402-413
Author(s):  
Marzena Szajewska ◽  
Agnieszka Maria Tereszkiewicz

The purpose of this paper is to discuss three types of boundary conditions for few families of special functions orthogonal on the fundamental region. Boundary value problems are considered on a simplex F in the real Euclidean space Rn of dimension n > 2.


1975 ◽  
Vol 18 (5) ◽  
pp. 679-689 ◽  
Author(s):  
J. E. Lewis

Let K be a compact subset of the real Euclidean space En. We say that K has constant width if the distance between each pair of distinct parallel hyperplanes which support K is constant. The collection of all compact convex subsets of En which have constant width is denoted .


1999 ◽  
Vol 11 (01) ◽  
pp. 25-40 ◽  
Author(s):  
R. FIORESI

In this paper we construct a quantum analogue of the big cell inside the grassmannian manifold. Our deformation comes in tandem with a coaction of the upper parabolic subgroup in SLn(k), giving to the big cell the structure of quantum homogeneous space. At the end we give the De Rham complex of the quantum big cell and we define a ring of differential operators acting on the quantum big cell.


2014 ◽  
Vol 11 (04) ◽  
pp. 1450026 ◽  
Author(s):  
Serkan Karaçuha ◽  
Christian Lomp

Hom-connections and associated integral forms have been introduced and studied by Brzeziński as an adjoint version of the usual notion of a connection in non-commutative geometry. Given a flat hom-connection on a differential calculus (Ω, d) over an algebra A yields the integral complex which for various algebras has been shown to be isomorphic to the non-commutative de Rham complex (in the sense of Brzeziński et al. [Non-commutative integral forms and twisted multi-derivations, J. Noncommut. Geom.4 (2010) 281–312]). In this paper we shed further light on the question when the integral and the de Rham complex are isomorphic for an algebra A with a flat Hom-connection. We specialize our study to the case where an n-dimensional differential calculus can be constructed on a quantum exterior algebra over an A-bimodule. Criteria are given for free bimodules with diagonal or upper-triangular bimodule structure. Our results are illustrated for a differential calculus on a multivariate quantum polynomial algebra and for a differential calculus on Manin's quantum n-space.


2015 ◽  
Vol 15 (2) ◽  
pp. 353-372
Author(s):  
Fyodor Malikov ◽  
Vadim Schechtman

2008 ◽  
Vol 48 (2) ◽  
pp. 158-173 ◽  
Author(s):  
V. Bernik ◽  
N. Budarina ◽  
D. Dickinson
Keyword(s):  
The Real ◽  

Sign in / Sign up

Export Citation Format

Share Document