Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI

2018 ◽  
Vol 28 (08) ◽  
pp. 1850018 ◽  
Author(s):  
Xiaogang Chen ◽  
Bing Zhao ◽  
Yijun Wang ◽  
Shengpu Xu ◽  
Xiaorong Gao

Although robot technology has been successfully used to empower people who suffer from motor disabilities to increase their interaction with their physical environment, it remains a challenge for individuals with severe motor impairment, who do not have the motor control ability to move robots or prosthetic devices by manual control. In this study, to mitigate this issue, a noninvasive brain-computer interface (BCI)-based robotic arm control system using gaze based steady-state visual evoked potential (SSVEP) was designed and implemented using a portable wireless electroencephalogram (EEG) system. A 15-target SSVEP-based BCI using a filter bank canonical correlation analysis (FBCCA) method allowed users to directly control the robotic arm without system calibration. The online results from 12 healthy subjects indicated that a command for the proposed brain-controlled robot system could be selected from 15 possible choices in 4[Formula: see text]s (i.e. 2[Formula: see text]s for visual stimulation and 2[Formula: see text]s for gaze shifting) with an average accuracy of 92.78%, resulting in a 15 commands/min transfer rate. Furthermore, all subjects (even naive users) were able to successfully complete the entire move-grasp-lift task without user training. These results demonstrated an SSVEP-based BCI could provide accurate and efficient high-level control of a robotic arm, showing the feasibility of a BCI-based robotic arm control system for hand-assistance.

2016 ◽  
Vol 39 (12) ◽  
pp. 1798-1810 ◽  
Author(s):  
Jinghua Guo ◽  
Yugong Luo ◽  
Keqiang Li

In this paper, the leader–follower formation control problem of autonomous over-actuated electric vehicles on a highway is studied. As the autonomous over-actuated electric vehicles have the characteristics of non-linearities, external disturbances and strong coupling, a novel coordinated three-level control system is constructed to supervise the longitudinal and lateral motions of autonomous electric vehicles. Firstly, an adaptive terminal sliding high-level control algorithm is designed to compute a vector of total forces and torque of vehicles, and the stability of the high-level control system is proven via Lyapunov analysis where uniform ultimate boundedness of the closed-loop signals is guaranteed. Then, a pseudo-inverse control allocation algorithm, which can achieve fault tolerance and reconfiguration of the redundant tyre actuation system, is presented to generate the desired longitudinal and lateral tyre forces. Then, a separate low-level controller consisting of an inverse tyre model and two inner loops for each wheel is designed to achieve its desired forces. Finally, simulation results demonstrate that the proposed control system not only enhance the tracking performance, but also improve the stability and riding comfort of autonomous over-actuated electric vehicles in a platoon.


Author(s):  
Ali Bouchaib ◽  
Rachid Taleb ◽  
Ahmed Massoum ◽  
Saad Mekhilef

The traditional quadcopter control systems should deal with two common problems. Namely, the singularities related to the inverse kinematics and the ambiguity linked to the quaternion representation of the dynamic model. Moreover, the stability problem due to the system nonlinearity and high degree of coupling. This paper provides a solution to the two issues by employing a geometrical integral-backstepping control system. The integral terms were added to improve system ability to track desired trajectories. The high-level control laws are considered as a virtual control and transmitted to the low-level to track the high-level commands. The proposed control system along with the quadcopter dynamic model were expressed in the special Euclidean group SE(3). Finally, the control system robustness against mismatching parameters was studied while tracking various paths.


2017 ◽  
Vol 4 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Masataka Yoshioka ◽  
Chi Zhu ◽  
Kazuhiro Uemoto ◽  
Hongbo Liang ◽  
Haoyong Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document