Heavy metal accumulation and the practical application of lichens as bioindicators for heavy metal pollution in surface soil

2016 ◽  
Vol 26 (03n04) ◽  
pp. 85-91
Author(s):  
Y. Sueoka ◽  
M. Sakakibara ◽  
S. Sano ◽  
K. Sera

Levels of trace element pollution in surface soil have been estimated using soil analyses and leaching tests. These methods may reveal different results due to the effect of soil properties on the elemental availability. Therefore, this study advocates an alternative method for monitoring and assessment of trace element pollution in surface soil using terricolous fruticose lichens. Lichens and their substrata were analyzed using particle induced X-ray emission (PIXE), inductively coupled plasma-mass spectrometry (ICP-MS) and XRF to clarify the relationships between Cu, Zn, As and Pb concentrations in lichens and soils, including their absorption properties. Concentrations of these elements in the lichens were positively correlated with those in the soils regardless of lichen species, location, habitat, or conditions of soils. The analyzed lichens had neither competitive nor antagonistic properties in their elemental absorption, which made them good bioindicators of trace element pollution in surface soil. The distribution maps of average Cu, Zn, As and Pb concentrations at each sampling region was detected at almost all of the Cu, Zn and As pollution of the soils. Therefore, lichens could be used in practical applications to monitor Cu, Zn and As pollution in surface soils.

Author(s):  
Yuri Sueoka ◽  
Masayuki Sakakibara ◽  
Sakae Sano ◽  
Yoshikazu Yamamoto

Levels of trace element pollution in surface soil can be estimated using soil analyses and leaching tests. These methods may reveal different results due to the effect of soil properties such as grain size and mineral composition on elemental availability. Therefore, this study advocates an alternative method for monitoring and assessment of trace element pollution in surface soil using terricolous fruticose lichens. Lichens growing at abandoned mine sites and unpolluted areas in Southwest Japan and their substrata were analyzed using inductively-coupled plasma-mass spectrometry and X-ray fluorescence spectrometry to clarify the relationships between Cu, Zn, As, and Pb concentrations in lichens and soils, including their absorption properties. Concentrations of these elements in the lichens were positively correlated with those in the soils regardless of lichen species, location, habitat, or conditions of soils. The analyzed lichens had neither competitive nor antagonistic properties in their elemental absorption, which made them good biomonitors of trace element pollution in surface soil. The distribution maps of average Cu, Zn, As, and Pb concentrations at each sampling region detected almost all of the Cu, Zn, and As pollution of the soils. Therefore, lichens could be used in practical applications to monitor Cu, Zn, and As pollution in soils.


Author(s):  
Yuri Sueoka ◽  
Masayuki Sakakibara ◽  
Sakae Sano ◽  
Yoshikazu Yamamoto

Levels of trace element pollution in surface soil can be estimated using soil analyses and leaching tests. These methods may reveal different results due to the effect of soil properties, such as grain size and mineral composition, on elemental availability. Therefore, this study advocates an alternative method for monitoring and assessment of trace element pollution in surface soil using terricolous fruticose lichens. Lichens growing at abandoned mine sites and unpolluted areas in southwest Japan and their substrata were analyzed using inductively coupled plasma-mass spectrometry and X-ray fluorescence spectrometry to clarify the relationships between Cu, Zn, As, and Pb concentrations in lichens and soils, including their absorption properties. Concentrations of these elements in the lichens were positively correlated with those in the soils regardless of lichen species, location, habitat, or conditions of soils. The analyzed lichens had neither competitive nor antagonistic properties in their elemental absorption, which made them good biomonitors of trace element pollution in surface soil. The distribution maps of average Cu, Zn, As, and Pb concentrations at each sampling region detected almost all of the Cu, Zn, and As pollution of the soils. Therefore, lichens could be used in practical applications to monitor Cu, Zn, and As pollution in surface soils.


Author(s):  
Yuri Sueoka ◽  
Masayuki Sakakibara ◽  
Sakae Sano ◽  
Yoshikazu Yamamoto

Levels of trace element pollution in surface soil can be estimated using soil analyses and leaching tests. These methods may reveal different results due to the effect of soil properties such as grain size and mineral composition on elemental availability. Therefore, this study advocates an alternative method for monitoring and assessment of trace element pollution in surface soil using terricolous fruticose lichens. Lichens growing at abandoned mine sites and unpolluted areas in Southwest Japan and their substrata were analyzed using inductively-coupled plasma-mass spectrometry and X-ray fluorescence spectrometry to clarify the relationships between Cu, Zn, As, and Pb concentrations in lichens and soils, including their absorption properties. Concentrations of these elements in the lichens were positively correlated with those in the soils regardless of lichen species, location, habitat, or conditions of soils. The analyzed lichens had neither competitive nor antagonistic properties in their elemental absorption, which made them good biomonitors of trace element pollution in surface soil. The distribution maps of average Cu, Zn, As, and Pb concentrations at each sampling region detected almost all of the Cu, Zn, and As pollution of the soils. Therefore, lichens could be used in practical applications to monitor Cu, Zn, and As pollution in soils.


2003 ◽  
Vol 60 (4) ◽  
pp. 747-754 ◽  
Author(s):  
Adão Luiz Castanheiro Martins ◽  
Ondino Cleante Bataglia ◽  
Otávio Antonio de Camargo

Contents of heavy metal on agricultural soils have been raised by land applications of sewage sludge and may constitute a hazard to plants, animals and humans. A field experiment was carried out from 1983 to 1987, to evaluate the long-term effect of sewage sludge application, with and without liming, on heavy metal accumulation and availability in a Rhodic Hapludox soil grown with maize (HMD 7974 hybrid). Trials were set up in a completely randomized blocks design with four replications. Each block was split in two bands, one with and another without liming. The sludge was applied in each band at rates: 0, 20, 40, 60 and 80 Mg ha-1 (dry basis) in a single application; and 40, 60 and 80 Mg ha-1 split in two, three and four equal yearly applications, respectively. The soil was sampled for chemical analysis each year after harvest. Soil samples were analysed for Cu, Ni and Zn in extracts obtained with DTPA and Mehlich-3 solutions, and in extracts obtained by digestion with nitric-perchloric acid (total metal contents), using an inductively coupled plasma (ICP) spectrometer. In general, Zn, Cu and Ni concentrations in DTPA and Mehlich-3 extracts increased linearly with sludge application. Total Cu and Zn concentrations increased when sludge was applied, whereas total Ni concentrations were not affected. Both extractants were suitable to evaluate Cu and Zn availability to corn in the soil treated with sewage sludge. Liming reduced the DTPA extractability of Zn. DTPA-extractable Cu concentrations were not significantly affected by liming. Mehlich-3-extractable Cu and Zn concentrations increased with liming. Only DTPA extractant indicated reduction of Ni concentrations in the soil after liming.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 219
Author(s):  
Haron S.H ◽  
Ismail S ◽  
Sidek L.M

The existence of heavy metals residues in water, soil and air poses a serious risk to all living organisms. Heavy metals, such as Cd, Pb, Cr, Ni, and Hg, are major sources of environmental pollution, especially in areas with high anthropogenic and agriculture activities. The objective of this study is to determine the status of heavy metal concentrations of Cd, Cr, Ni, Pb, Zn, Cu, and Fe in the water bodies of Bertam River, which passes through agricultural areas. The water samples were collected randomly in three replicates from 10 sampling points along the Bertam River. The heavy metals in the water were extracted by using filter paper with a pore size of 0.45 mm. The extracted water sample was preserved by adding nitric acid (pH <2). Sample concentrations were then tested for metal concentrations using inductively coupled plasma mass spectrometry. In this study, the highest mean concentration was Fe (96.04 ± 90.43 ppb), followed by Zn (5.68 ± 0.2.34 ppb), Cu (5.13 ± 2.98 ppb), Cr (1.53 ± 0.19 ppb), Ni (0.85 ± 0.22 ppb), Pb (0.85 ± 1.61 ppb), and Cd (0.027 ± 0.02 ppb), where Fe> Zn> Cu> Pb> Cr> Ni> Cd. However, the concentrations of selected heavy metals in the water samples were below the standards recommended by the World Health Organization.


Parasitology ◽  
2016 ◽  
Vol 143 (6) ◽  
pp. 794-799 ◽  
Author(s):  
C. COURTNEY-HOGUE

SUMMARYThe accumulation of heavy metals in macroparasites of fish has been widely studied in freshwater environments. Less is known about metal uptake in cestodes parasitizing marine fish. Lacistorhynchus dollfusi is a common larval cestode parasite of Pacific sanddab (Citharichthys sordidus), a flatfish species inhabiting Santa Monica Bay. The ability of this cestode to concentrate metals in its tissues was compared with metal levels in its sanddab host. Fish and cestode tissue were analysed for 14 elements using Inductively Coupled Plasma Mass Spectrometry. The elements analysed were silver (Ag), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), potassium (K), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti) and zinc (Zn). Three of the 14 metals (Cu, Hg and Zn) were significantly greater in concentration in L. dollfusi compared with their levels in the liver, intestine and muscle of their fish host. They ranked in concentration from highest to lowest as follows: Zn > Cu > Hg. The ability of the cestode L. dollfusi to uptake metals at higher concentrations than its host warrants its consideration as a candidate for a heavy metal accumulation indicator of pollution exposure in Pacific sanddab.


Sign in / Sign up

Export Citation Format

Share Document