A SERS-BASED ANALYZER FOR POINT AND CONTINUOUS WATER MONITORING OF CHEMICAL AGENTS AND THEIR HYDROLYSIS PRODUCTS

2007 ◽  
Vol 17 (04) ◽  
pp. 719-728 ◽  
Author(s):  
STUART FARQUHARSON ◽  
FRANK E. INSCORE

Protection of military personnel and civilians from water supplies poisoned by chemical warfare agents (CWAs) requires an analyzer that has sufficient sensitivity (μg/L, ppb), specificity (differentiate the CWA from its hydrolysis products), and speed (less than 10 minutes) to be of value. In an effort to meet these requirements, we have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to detect cyanide and sulfur mustard in water. In our work, we have developed a novel SERS-active material that consists of a porous glass with trapped metal particles. Previously, we coated the inside walls of glass vials and measured cyanide at 1 mg/L in water in as little as 1 minute. However, measurements of sulfur mustard have only been measured to 10 mg/L. Recently, we filled glass capillaries with the SERS-active material. Here we describe measurements of cyanide, sulfur mustard, and it's hydrolysis product, thiodiglycol, using these capillaries and a portable Raman analyzer suitable for point and continuous water monitoring.

2005 ◽  
Vol 59 (5) ◽  
pp. 654-660 ◽  
Author(s):  
Stuart Farquharson ◽  
Alan Gift ◽  
Paul Maksymiuk ◽  
Frank Inscore

Detection of chemical agents as poisons in water supplies not only requires μg/L sensitivity, but also requires the ability to distinguish their hydrolysis products. We have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to detect chemical agents at these concentrations. Here we expand these studies and present the SERS spectra of the nerve agent VX (ethyl S-2-diisopropylamino ethyl methylphosphonothioate) and its hydrolysis products, ethyl S-2-diisopropylamino methylphosphonothioate, 2-(diisopropylamino) ethanethiol, ethyl methylphosphonic acid, and methylphosphonic acid. Vibrational mode assignments for the observed SERS peaks are also provided. Overall, each of these chemicals produces a series of peaks between 450 and 900 cm−1 that are sufficiently unique to allow identification. SERS measurements were performed in silver-doped sol-gel-filled capillaries that are being developed as part of an extractive point sensor.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850028 ◽  
Author(s):  
Anna A. Semenova ◽  
Alexander E. Baranchikov ◽  
Vladimir K. Ivanov ◽  
Eugene A. Goodilin

A novel robust and effective approach is suggested to form thin film substrates for surface-enhanced Raman spectroscopy (SERS) using interfacial self-assembly in demixing water/toluene Pickering emulsions collecting silver octahedral mesocages onto a finally flat interfacial region. The freely floating self-assembled silver films obtained after toluene evaporation can be transferred onto various substrates including those with an ordered superficial relief causing a further alignment of silver octahedra. A special porous aggregative structure of the octahedra mesocages provokes a great number of hot spots allowing a large amplification of Raman scattering signal of model dye analytes and molecular thiol products of crude oil desulfurization. The suggested method seems to be an easy scaling route for SERS active material production.


Nanoscale ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 1305-1308 ◽  
Author(s):  
Aron Hakonen ◽  
Tomas Rindzevicius ◽  
Michael Stenbæk Schmidt ◽  
Per Ola Andersson ◽  
Lars Juhlin ◽  
...  

Threats from chemical warfare agents, commonly known as nerve gases, constitute a serious security issue of increasing global concern because of surging terrorist activity worldwide.


2017 ◽  
Author(s):  
Caitlin S. DeJong ◽  
David I. Wang ◽  
Aleksandr Polyakov ◽  
Anita Rogacs ◽  
Steven J. Simske ◽  
...  

Through the direct detection of bacterial volatile organic compounds (VOCs), via surface enhanced Raman spectroscopy (SERS), we report here a reconfigurable assay for the identification and monitoring of bacteria. We demonstrate differentiation between highly clinically relevant organisms: <i>Escherichia coli</i>, <i>Enterobacter cloacae</i>, and <i>Serratia marcescens</i>. This is the first differentiation of bacteria via SERS of bacterial VOC signatures. The assay also detected as few as 10 CFU/ml of <i>E. coli</i> in under 12 hrs, and detected <i>E. coli</i> from whole human blood and human urine in 16 hrs at clinically relevant concentrations of 10<sup>3</sup> CFU/ml and 10<sup>4</sup> CFU/ml, respectively. In addition, the recent emergence of portable Raman spectrometers uniquely allows SERS to bring VOC detection to point-of-care settings for diagnosing bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document