Interfacial self-assembly of nanostructured silver octahedra for surface-enhanced Raman spectroscopy

2018 ◽  
Vol 11 (05) ◽  
pp. 1850028 ◽  
Author(s):  
Anna A. Semenova ◽  
Alexander E. Baranchikov ◽  
Vladimir K. Ivanov ◽  
Eugene A. Goodilin

A novel robust and effective approach is suggested to form thin film substrates for surface-enhanced Raman spectroscopy (SERS) using interfacial self-assembly in demixing water/toluene Pickering emulsions collecting silver octahedral mesocages onto a finally flat interfacial region. The freely floating self-assembled silver films obtained after toluene evaporation can be transferred onto various substrates including those with an ordered superficial relief causing a further alignment of silver octahedra. A special porous aggregative structure of the octahedra mesocages provokes a great number of hot spots allowing a large amplification of Raman scattering signal of model dye analytes and molecular thiol products of crude oil desulfurization. The suggested method seems to be an easy scaling route for SERS active material production.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1288
Author(s):  
Thi Thuy Nguyen ◽  
Fayna Mammeri ◽  
Souad Ammar ◽  
Thi Bich Ngoc Nguyen ◽  
Trong Nghia Nguyen ◽  
...  

The formation of silver nanopetal-Fe3O4 poly-nanocrystals assemblies and the use of the resulting hetero-nanostructures as active substrates for Surface Enhanced Raman Spectroscopy (SERS) application are here reported. In practice, about 180 nm sized polyol-made Fe3O4 spheres, constituted by 10 nm sized crystals, were functionalized by (3-aminopropyl)triethoxysilane (APTES) to become positively charged, which can then electrostatically interact with negatively charged silver seeds. Silver petals were formed by seed-mediated growth in presence of Ag+ cations and self-assembly, using L-ascorbic acid (L-AA) and polyvinyl pyrrolidone (PVP) as mid-reducing and stabilizing agents, respectively. The resulting plasmonic structure provides a rough surface with plenty of hot spots able to locally enhance significantly any applied electrical field. Additionally, they exhibited a high enough saturation magnetization with Ms = 9.7 emu g−1 to be reversibly collected by an external magnetic field, which shortened the detection time. The plasmonic property makes the engineered Fe3O4-Ag architectures particularly valuable for magnetically assisted ultra-sensitive SERS sensing. This was unambiguously established through the successful detection, in water, of traces, (down to 10−10 M) of Rhodamine 6G (R6G), at room temperature.


2016 ◽  
Vol 40 (9) ◽  
pp. 7286-7289 ◽  
Author(s):  
Yuanchao Zhang ◽  
Jingquan Liu ◽  
Da Li ◽  
Fuhua Yan ◽  
Xin Wang ◽  
...  

Self-assembly of ultrathin gold nanowires and single-walled carbon nanotubes as highly sensitive substrates for surface enhanced Raman spectroscopy.


Author(s):  
haidong Zhao ◽  
Katsuhiro Isozaki ◽  
Tomoya Taguchi ◽  
Shengchun Yang ◽  
Kazushi Miki

Laying-down gold nanorods (GNRs) of a monolayer immobilized on a solid substrate was realized with the hybrid method, a combination of three elemental technologies: self-assembly, electrophoresis, and solvent evaporation. The...


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nan Chen ◽  
Ting-Hui Xiao ◽  
Zhenyi Luo ◽  
Yasutaka Kitahama ◽  
Kotaro Hiramatsu ◽  
...  

Abstract Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for vibrational spectroscopy as it provides several orders of magnitude higher sensitivity than inherently weak spontaneous Raman scattering by exciting localized surface plasmon resonance (LSPR) on metal substrates. However, SERS can be unreliable for biomedical use since it sacrifices reproducibility, uniformity, biocompatibility, and durability due to its strong dependence on “hot spots”, large photothermal heat generation, and easy oxidization. Here, we demonstrate the design, fabrication, and use of a metal-free (i.e., LSPR-free), topologically tailored nanostructure composed of porous carbon nanowires in an array as a SERS substrate to overcome all these problems. Specifically, it offers not only high signal enhancement (~106) due to its strong broadband charge-transfer resonance, but also extraordinarily high reproducibility due to the absence of hot spots, high durability due to no oxidization, and high compatibility to biomolecules due to its fluorescence quenching capability.


Nano Letters ◽  
2010 ◽  
Vol 10 (12) ◽  
pp. 5006-5013 ◽  
Author(s):  
Jixiang Fang ◽  
Shuya Du ◽  
Sergei Lebedkin ◽  
Zhiyuan Li ◽  
Robert Kruk ◽  
...  

ACS Nano ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. 528-536 ◽  
Author(s):  
Xiang Wang ◽  
Maohua Li ◽  
Lingyan Meng ◽  
Kaiqiang Lin ◽  
Jiamin Feng ◽  
...  

2020 ◽  
Author(s):  
Won-Geun Kim ◽  
Jongmin Lee ◽  
Vasanthan Devaraj ◽  
Minjun Kim ◽  
Hyuk Jeong ◽  
...  

Abstract Plasmonic nanoparticle clusters promise to support various, unique artificial electromagnetisms at optical frequencies, realizing new concept devices for diverse nanophotonic applications. However, the technological challenges associated with the fabrication of plasmonic clusters with programmed geometry and composition remain unresolved. Here, we present a freeform fabrication of hierarchical plasmonic clusters (HPCs) based on omnidirectional guiding of evaporative self-assembly of gold nanoparticles (AuNPs) with the aid of 3D printing. Our method offers a facile, universal route to shape the multiscale features of HPCs in three-dimensions, leading to versatile manipulation of both far-field and near-field characteristics. Various functional nanomaterials can be effectively coupled to plasmonic modes of the HPCs by simply mixing with AuNP ink. We demonstrate in particular an ultracompact surface-enhanced Raman spectroscopy (SERS) platform to detect M13 viruses and their mutations from femtolitre volume, sub-100pM analytes. This SERS microplatform could pave the way towards simple, innovative detection methods of diverse pathogens, which is in high demand for handling pandemic situations. We expect our method to freely design and realize nanophotonic structures beyond the restrictions of traditional fabrication processes. Plasmonic nanoparticle clusters have attracted great attention due to the unique capability to manipulate electromagnetic fields at the sub-wavelength scale1–5. Ensembles of metallic nanoparticles generate various electromagnetisms at optical frequencies such as artificial magnetism6–10 and Fano-like interference11–13 and a strong field localization in the structure14–16. These unique properties are geometry-dependent and lead to a broad range of applications in sensing16,17, surface-enhanced spectroscopies18–22, nonlinear integrated photonics23,24, and light harvesting25,26. Traditionally, plasmonic clusters with tailored size and geometry are fabricated on substrates by top-down processes such as electron-beam lithography4,5 or focused-ion beam milling27,28. These approaches suffer from low throughput and are generally limited to in-plane fabrication. Alternatively, the self-assembly of colloids has been proposed as a versatile, high-throughput, and cost-effective route. A number of clever methods based on chemical linking (e.g., DNA origami)29–30 and/or convective assembly on lithographically structured templates25,26,31 have been devised to construct 2D or 3D plasmonic clusters. The shape formation, however, is mostly constrained by the thermodynamic impetus and/or template geometry. A significant challenge would be overcome these restrictions and expand structural design freedom in the fabrication of plasmonic cluster architectures with symmetry-breaking geometries. In this work, we develop a freeform, programmable 3D assembly of of hierarchical plasmonic clusters (HPCs). By exploiting micronozzle 3D printing, we demonstrate highly localized, omnidirectional meniscus-guided assembly of metallic nanoparticles, constructing a freestanding HPC with a tailored geometry that can control the far-field character. Our approach also allows versatile manipulation and exploitation of the near-field interaction in the HPC by a facile heterogeneous nanoparticle mixing. We demonstrate that 3D-printed HPCs can be utilized as an ultracompact surface-enhanced Raman spectroscopy (SERS) platform to detect M13 viruses and their mutations from femtolitre volume, sub-100pM analytes.


Sign in / Sign up

Export Citation Format

Share Document