Bacterial detection and differentiation via direct volatile organic compound sensing with surface enhanced Raman spectroscopy

2017 ◽  
Author(s):  
Caitlin S. DeJong ◽  
David I. Wang ◽  
Aleksandr Polyakov ◽  
Anita Rogacs ◽  
Steven J. Simske ◽  
...  

Through the direct detection of bacterial volatile organic compounds (VOCs), via surface enhanced Raman spectroscopy (SERS), we report here a reconfigurable assay for the identification and monitoring of bacteria. We demonstrate differentiation between highly clinically relevant organisms: <i>Escherichia coli</i>, <i>Enterobacter cloacae</i>, and <i>Serratia marcescens</i>. This is the first differentiation of bacteria via SERS of bacterial VOC signatures. The assay also detected as few as 10 CFU/ml of <i>E. coli</i> in under 12 hrs, and detected <i>E. coli</i> from whole human blood and human urine in 16 hrs at clinically relevant concentrations of 10<sup>3</sup> CFU/ml and 10<sup>4</sup> CFU/ml, respectively. In addition, the recent emergence of portable Raman spectrometers uniquely allows SERS to bring VOC detection to point-of-care settings for diagnosing bacterial infections.

2017 ◽  
Author(s):  
Caitlin S. DeJong ◽  
David I. Wang ◽  
Aleksandr Polyakov ◽  
Anita Rogacs ◽  
Steven J. Simske ◽  
...  

Through the direct detection of bacterial volatile organic compounds (VOCs), via surface enhanced Raman spectroscopy (SERS), we report here a reconfigurable assay for the identification and monitoring of bacteria. We demonstrate differentiation between highly clinically relevant organisms: <i>Escherichia coli</i>, <i>Enterobacter cloacae</i>, and <i>Serratia marcescens</i>. This is the first differentiation of bacteria via SERS of bacterial VOC signatures. The assay also detected as few as 10 CFU/ml of <i>E. coli</i> in under 12 hrs, and detected <i>E. coli</i> from whole human blood and human urine in 16 hrs at clinically relevant concentrations of 10<sup>3</sup> CFU/ml and 10<sup>4</sup> CFU/ml, respectively. In addition, the recent emergence of portable Raman spectrometers uniquely allows SERS to bring VOC detection to point-of-care settings for diagnosing bacterial infections.


2019 ◽  
Vol 9 (7) ◽  
pp. 1448 ◽  
Author(s):  
Logan Hamm ◽  
Amira Gee ◽  
A. Swarnapali De Silva Indrasekara

Diagnosis is the key component in disease elimination to improve global health. However, there is a tremendous need for diagnostic innovation for neglected tropical diseases that largely consist of mosquito-borne infections and bacterial infections. Early diagnosis of these infectious diseases is critical but challenging because the biomarkers are present at low concentrations, demanding bioanalytical techniques that can deliver high sensitivity with ensured specificity. Owing to the plasmonic nanomaterials-enabled high detection sensitivities, even up to single molecules, surface-enhanced Raman spectroscopy (SERS) has gained attention as an optical analytical tool for early disease biomarker detection. In this mini-review, we highlight the SERS-based assay development tailored to detect key types of biomarkers for mosquito-borne and bacterial infections. We discuss in detail the variations of SERS-based techniques that have developed to afford qualitative and quantitative disease biomarker detection in a more accurate, affordable, and field-transferable manner. Current and emerging challenges in the advancement of SERS-based technologies from the proof-of-concept phase to the point-of-care phase are also briefly discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simon D. Dryden ◽  
Salzitsa Anastasova ◽  
Giovanni Satta ◽  
Alex J. Thompson ◽  
Daniel R. Leff ◽  
...  

AbstractUrinary tract infection is one of the most common bacterial infections leading to increased morbidity, mortality and societal costs. Current diagnostics exacerbate this problem due to an inability to provide timely pathogen identification. Surface enhanced Raman spectroscopy (SERS) has the potential to overcome these issues by providing immediate bacterial classification. To date, achieving accurate classification has required technically complicated processes to capture pathogens, which has precluded the integration of SERS into rapid diagnostics. This work demonstrates that gold-coated membrane filters capture and aggregate bacteria, separating them from urine, while also providing Raman signal enhancement. An optimal gold coating thickness of 50 nm was demonstrated, and the diagnostic performance of the SERS-active filters was assessed using phantom urine infection samples at clinically relevant concentrations (105 CFU/ml). Infected and uninfected (control) samples were identified with an accuracy of 91.1%. Amongst infected samples only, classification of three bacteria (Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae) was achieved at a rate of 91.6%.


2011 ◽  
Vol 78 (6) ◽  
pp. 1930-1935 ◽  
Author(s):  
Suzanne L. Hennigan ◽  
Jeremy D. Driskell ◽  
Naola Ferguson-Noel ◽  
Richard A. Dluhy ◽  
Yiping Zhao ◽  
...  

ABSTRACTMycoplasma gallisepticumis a bacterial pathogen of poultry that is estimated to cause annual losses exceeding $780 million. The National Poultry Improvement Plan guidelines recommend regular surveillance and intervention strategies to containM. gallisepticuminfections and ensure mycoplasma-free avian stocks, but several factors make detection ofM. gallisepticumand diagnosis ofM. gallisepticuminfection a major challenge. Current techniques are laborious, require special expertise, and are typically plagued by false results. In this study, we describe a novel detection strategy which uses silver nanorod array–surface-enhanced Raman spectroscopy (NA-SERS) for direct detection of avian mycoplasmas. As a proof of concept for use in avian diagnostics, we used NA-SERS to detect and differentiate multiple strains of avian mycoplasma species, includingAcholeplasma laidlawii,Mycoplasma gallinarum,Mycoplasma gallinaceum,Mycoplasma synoviae, andM. gallisepticum, including vaccine strains 6/85, F, and ts-11. Chemometric multivariate analysis of spectral data was used to classify these species rapidly and accurately, with >93% sensitivity and specificity. Furthermore, NA-SERS had a lower limit of detection that was 100-fold greater than that of standard PCR and comparable to that of real-time quantitative PCR. Detection ofM. gallisepticumin choanal cleft swabs from experimentally infected birds yielded good sensitivity and specificity, suggesting that NA-SERS is applicable for clinical detection.


2016 ◽  
Vol 12 (6) ◽  
pp. 1445-1451 ◽  
Author(s):  
Funing Chen ◽  
Briana R. Flaherty ◽  
Charli E. Cohen ◽  
David S. Peterson ◽  
Yiping Zhao

Sign in / Sign up

Export Citation Format

Share Document