scholarly journals Analytic cycles in flip passages and in instanton moduli spaces over non-Kählerian surfaces

2016 ◽  
Vol 27 (07) ◽  
pp. 1640009 ◽  
Author(s):  
Andrei Teleman

Let [Formula: see text] ([Formula: see text]) be a moduli space of stable (polystable) bundles with fixed determinant on a complex surface with [Formula: see text] and let [Formula: see text] be a pure [Formula: see text]-dimensional analytic set. We prove a general formula for the homological boundary [Formula: see text] of the Borel–Moore fundamental class of [Formula: see text] in the boundary of the blown up moduli space [Formula: see text]. The proof is based on the holomorphic model theorem of [A. Teleman, Instanton moduli spaces on non-Kählerian surfaces, Holomorphic models around the reduction loci, J. Geom. Phys. 91 (2015) 66–87] which identifies a neighborhood of a boundary component of [Formula: see text] with a neighborhood of the boundary of a “blown up flip passage”. We then focus on a particular instanton moduli space which intervenes in our program for proving the existence of curves on class VII surfaces. Using our result, combined with general properties of the Donaldson cohomology classes, we prove incidence relations between the Zariski closures (in the considered moduli space) of certain families of extensions. These incidence relations are crucial for understanding the geometry of the moduli space, and cannot be obtained using classical complex geometric deformation theory.

2017 ◽  
Vol 28 (04) ◽  
pp. 1750021 ◽  
Author(s):  
Julie Rana

We give a bound on which singularities may appear on Kollár–Shepherd-Barron–Alexeev stable surfaces for a wide range of topological invariants and use this result to describe all stable numerical quintic surfaces (KSBA-stable surfaces with [Formula: see text]) whose unique non-Du Val singularity is a Wahl singularity. We then extend the deformation theory of Horikawa to the log setting in order to describe the boundary divisor of the moduli space [Formula: see text] corresponding to these surfaces. Quintic surfaces are the simplest examples of surfaces of general type and the question of describing their moduli is a long-standing question in algebraic geometry.


2016 ◽  
Vol 17 (3) ◽  
pp. 615-672 ◽  
Author(s):  
Gavril Farkas ◽  
Rahul Pandharipande

The moduli space of canonical divisors (with prescribed zeros and poles) on nonsingular curves is not compact since the curve may degenerate. We define a proper moduli space of twisted canonical divisors in $\overline{{\mathcal{M}}}_{g,n}$ which includes the space of canonical divisors as an open subset. The theory leads to geometric/combinatorial constraints on the closures of the moduli spaces of canonical divisors.In case the differentials have at least one pole (the strictly meromorphic case), the moduli spaces of twisted canonical divisors on genus $g$ curves are of pure codimension $g$ in $\overline{{\mathcal{M}}}_{g,n}$. In addition to the closure of the canonical divisors on nonsingular curves, the moduli spaces have virtual components. In the Appendix A, a complete proposal relating the sum of the fundamental classes of all components (with intrinsic multiplicities) to a formula of Pixton is proposed. The result is a precise and explicit conjecture in the tautological ring for the weighted fundamental class of the moduli spaces of twisted canonical divisors.As a consequence of the conjecture, the classes of the closures of the moduli spaces of canonical divisors on nonsingular curves are determined (both in the holomorphic and meromorphic cases).


2014 ◽  
Vol 150 (9) ◽  
pp. 1457-1481 ◽  
Author(s):  
Cristina Manolache

AbstractWe analyze the relationship between two compactifications of the moduli space of maps from curves to a Grassmannian: the Kontsevich moduli space of stable maps and the Marian–Oprea–Pandharipande moduli space of stable quotients. We construct a moduli space which dominates both the moduli space of stable maps to a Grassmannian and the moduli space of stable quotients, and equip our moduli space with a virtual fundamental class. We relate the virtual fundamental classes of all three moduli spaces using the virtual push-forward formula. This gives a new proof of a theorem of Marian–Oprea–Pandharipande: that enumerative invariants defined as intersection numbers in the stable quotient moduli space coincide with Gromov–Witten invariants.


2021 ◽  
pp. 2150059
Author(s):  
Alice Fialowski ◽  
Michael Penkava

In this paper, we study moduli spaces of low-dimensional complex Lie superalgebras. We discover a similar pattern for the structure of these moduli spaces as we observed for ordinary Lie algebras, namely, that there is a stratification of the moduli space by projective orbifolds. The moduli spaces consist of some families as well as some singleton elements. The different strata are linked by jump deformations, which gives a unique manner of decomposing the moduli space which is consistent with deformation theory.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


Author(s):  
Ulrich Görtz ◽  
Xuhua He ◽  
Michael Rapoport

Abstract We investigate qualitative properties of the underlying scheme of Rapoport–Zink formal moduli spaces of p-divisible groups (resp., shtukas). We single out those cases where the dimension of this underlying scheme is zero (resp., those where the dimension is the maximal possible). The model case for the first alternative is the Lubin–Tate moduli space, and the model case for the second alternative is the Drinfeld moduli space. We exhibit a complete list in both cases.


2021 ◽  
Vol 8 (1) ◽  
pp. 208-222
Author(s):  
Georges Dloussky

Abstract Let S be a compact complex surface in class VII0 + containing a cycle of rational curves C = ∑Dj . Let D = C + A be the maximal connected divisor containing C. If there is another connected component of curves C ′ then C ′ is a cycle of rational curves, A = 0 and S is a Inoue-Hirzebruch surface. If there is only one connected component D then each connected component Ai of A is a chain of rational curves which intersects a curve Dj of the cycle and for each curve Dj of the cycle there at most one chain which meets Dj . In other words, we do not prove the existence of curves other those of the cycle C, but if some other curves exist the maximal divisor looks like the maximal divisor of a Kato surface with perhaps missing curves. The proof of this topological result is an application of Donaldson theorem on trivialization of the intersection form and of deformation theory. We apply this result to show that a twisted logarithmic 1-form has a trivial vanishing divisor.


2020 ◽  
pp. 1-23
Author(s):  
MICHELE BOLOGNESI ◽  
NÉSTOR FERNÁNDEZ VARGAS

Abstract Let C be a hyperelliptic curve of genus $g \geq 3$ . In this paper, we give a new geometric description of the theta map for moduli spaces of rank 2 semistable vector bundles on C with trivial determinant. In order to do this, we describe a fibration of (a birational model of) the moduli space, whose fibers are GIT quotients $(\mathbb {P}^1)^{2g}//\text {PGL(2)}$ . Then, we identify the restriction of the theta map to these GIT quotients with some explicit degree 2 osculating projection. As a corollary of this construction, we obtain a birational inclusion of a fibration in Kummer $(g-1)$ -varieties over $\mathbb {P}^g$ inside the ramification locus of the theta map.


Author(s):  
Anna Gori ◽  
Alberto Verjovsky ◽  
Fabio Vlacci

AbstractMotivated by the theory of complex multiplication of abelian varieties, in this paper we study the conformality classes of flat tori in $${\mathbb {R}}^{n}$$ R n and investigate criteria to determine whether a n-dimensional flat torus has non trivial (i.e. bigger than $${\mathbb {Z}}^{*}={\mathbb {Z}}{\setminus }\{0\}$$ Z ∗ = Z \ { 0 } ) semigroup of conformal endomorphisms (the analogs of isogenies for abelian varieties). We then exhibit several geometric constructions of tori with this property and study the class of conformally equivalent lattices in order to describe the moduli space of the corresponding tori.


2010 ◽  
Vol 198 ◽  
pp. 173-190 ◽  
Author(s):  
Tatsuki Hayama

AbstractThis paper examines the moduli spaces of log Hodge structures introduced by Kato and Usui. This moduli space is a partial compactification of a discrete quotient of a period domain. This paper treats the following two cases: (A) where the period domain is Hermitian symmetric, and (B) where the Hodge structures are of the mirror quintic type. Especially it addresses a property of the torsor.


Sign in / Sign up

Export Citation Format

Share Document