scholarly journals Integration over the quantum diagonal subgroup and associated Fourier-like algebras

2016 ◽  
Vol 27 (09) ◽  
pp. 1650073 ◽  
Author(s):  
Uwe Franz ◽  
Hun Hee Lee ◽  
Adam Skalski

By analogy with the classical construction due to Forrest, Samei and Spronk, we associate to every compact quantum group [Formula: see text], a completely contractive Banach algebra [Formula: see text], which can be viewed as a deformed Fourier algebra of [Formula: see text]. To motivate the construction, we first analyze in detail the quantum version of the integration over the diagonal subgroup, showing that although the quantum diagonal subgroups in fact never exist, as noted earlier by Kasprzak and Sołtan, the corresponding integration represented by a certain idempotent state on [Formula: see text] makes sense as long as [Formula: see text] is of Kac type. Finally, we analyze as an explicit example the algebras [Formula: see text], [Formula: see text], associated to Wang’s free orthogonal groups, and show that they are not operator weakly amenable.

Author(s):  
Martijn Caspers

Abstract One of the main aims of this paper is to give a large class of strongly solid compact quantum groups. We do this by using quantum Markov semigroups and noncommutative Riesz transforms. We introduce a property for quantum Markov semigroups of central multipliers on a compact quantum group which we shall call ‘approximate linearity with almost commuting intertwiners’. We show that this property is stable under free products, monoidal equivalence, free wreath products and dual quantum subgroups. Examples include in particular all the (higher-dimensional) free orthogonal easy quantum groups. We then show that a compact quantum group with a quantum Markov semigroup that is approximately linear with almost commuting intertwiners satisfies the immediately gradient- ${\mathcal {S}}_2$ condition from [10] and derive strong solidity results (following [10]). Using the noncommutative Riesz transform we also show that these quantum groups have the Akemann–Ostrand property; in particular, the same strong solidity results follow again (now following [27]).


1992 ◽  
Vol 07 (05) ◽  
pp. 441-446 ◽  
Author(s):  
A. ZABRODIN

We consider the scattering of two dressed excitations in the antiferromagnetic XXZ spin-1/2 chain and show that it is equivalent to the S-wave scattering problem for a free particle on the certain quantum symmetric space “quantum hyperboloid” related to the non-compact quantum group SU q (1, 1).


2013 ◽  
Vol 65 (5) ◽  
pp. 1073-1094 ◽  
Author(s):  
Mehrdad Kalantar ◽  
Matthias Neufang

AbstractIn this paper we use the recent developments in the representation theory of locally compact quantum groups, to assign to each locally compact quantum group 𝔾 a locally compact group 𝔾˜ that is the quantum version of point-masses and is an invariant for the latter. We show that “quantum point-masses” can be identified with several other locally compact groups that can be naturally assigned to the quantum group 𝔾. This assignment preserves compactness as well as discreteness (hence also finiteness), and for large classes of quantum groups, amenability. We calculate this invariant for some of the most well-known examples of non-classical quantum groups. Also, we show that several structural properties of 𝔾 are encoded by 𝔾˜; the latter, despite being a simpler object, can carry very important information about 𝔾.


Author(s):  
CHI-KEUNG NG

In this paper, we will prove that if A is a C*-algebra with an effective coaction ε by a compact quantum group, then the fixed point algebra and the reduced crossed product are Morita equivalent. As an application, we prove an imprimitivity type theorem for crossed products of coactions by discrete Kac C*-algebras.


2020 ◽  
Vol 63 (4) ◽  
pp. 825-836
Author(s):  
Mehdi Nemati ◽  
Maryam Rajaei Rizi

AbstractLet $\mathbb{G}$ be a locally compact quantum group and let $I$ be a closed ideal of $L^{1}(\mathbb{G})$ with $y|_{I}\neq 0$ for some $y\in \text{sp}(L^{1}(\mathbb{G}))$. In this paper, we give a characterization for compactness of $\mathbb{G}$ in terms of the existence of a weakly compact left or right multiplier $T$ on $I$ with $T(f)(y|_{I})\neq 0$ for some $f\in I$. Using this, we prove that $I$ is an ideal in its second dual if and only if $\mathbb{G}$ is compact. We also study Arens regularity of $I$ whenever it has a bounded left approximate identity. Finally, we obtain some characterizations for amenability of $\mathbb{G}$ in terms of the existence of some $I$-module homomorphisms on $I^{\ast \ast }$ and on $I^{\ast }$.


2016 ◽  
Vol 68 (2) ◽  
pp. 309-333 ◽  
Author(s):  
Matthew Daws

AbstractWe show that the assignment of the (left) completely bounded multiplier algebra Mlcb(L1()) to a locally compact quantum group , and the assignment of the intrinsic group, form functors between appropriate categories. Morphisms of locally compact quantum groups can be described by Hopf *-homomorphisms between universal C*-algebras, by bicharacters, or by special sorts of coactions. We show that the whole theory of completely bounded multipliers can be lifted to the universal C*-algebra level, and that the different pictures of both multipliers (reduced, universal, and as centralisers) and morphisms then interact in extremely natural ways. The intrinsic group of a quantum group can be realised as a class of multipliers, and so our techniques immediately apply. We also show how to think of the intrinsic group using the universal C*-algebra picture, and then, again, how the differing views on the intrinsic group interact naturally with morphisms. We show that the intrinsic group is the “maximal classical” quantum subgroup of a locally compact quantum group, that it is even closed in the strong Vaes sense, and that the intrinsic group functor is an adjoint to the inclusion functor from locally compact groups to quantum groups.


Sign in / Sign up

Export Citation Format

Share Document