PARTICLE MESH HYDRODYNAMICS FOR ASTROPHYSICS SIMULATIONS

2007 ◽  
Vol 18 (04) ◽  
pp. 610-618 ◽  
Author(s):  
PHILIPPE CHATELAIN ◽  
GEORGES-HENRI COTTET ◽  
PETROS KOUMOUTSAKOS

We present a particle method for the simulation of three dimensional compressible hydrodynamics based on a hybrid Particle-Mesh discretization of the governing equations. The method is rooted on the regularization of particle locations as in remeshed Smoothed Particle Hydrodynamics (rSPH). The rSPH method was recently introduced to remedy problems associated with the distortion of computational elements in SPH, by periodically re-initializing the particle positions and by using high order interpolation kernels. In the PMH formulation, the particles solely handle the convective part of the compressible Euler equations. The particle quantities are then interpolated onto a mesh, where the pressure terms are computed. PMH, like SPH, is free of the convection CFL condition while at the same time it is more efficient as derivatives are computed on a mesh rather than particle-particle interactions. PMH does not detract from the adaptive character of SPH and allows for control of its accuracy. We present simulations of a benchmark astrophysics problem demonstrating the capabilities of this approach.

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Kai Gong ◽  
Songdong Shao ◽  
Hua Liu ◽  
Pengzhi Lin ◽  
Qinqin Gui

This paper presents a smoothed particle hydrodynamics (SPH) modeling technique based on the cylindrical coordinates for axisymmetrical hydrodynamic applications, thus to avoid a full three-dimensional (3D) numerical scheme as required in the Cartesian coordinates. In this model, the governing equations are solved in an axisymmetric form and the SPH approximations are modified into a two-dimensional cylindrical space. The proposed SPH model is first validated by a dam-break flow induced by the collapse of a cylindrical column of water with different water height to semi-base ratios. Then, the model is used to two benchmark water entry problems, i.e., cylindrical disk and circular sphere entry. In both cases, the model results are favorably compared with the experimental data. The convergence of model is demonstrated by comparing with the different particle resolutions. Besides, the accuracy and efficiency of the present cylindrical SPH are also compared with a fully 3D SPH computation. Extensive discussions are made on the water surface, velocity, and pressure fields to demonstrate the robust modeling results of the cylindrical SPH.


2020 ◽  
Vol 17 (10) ◽  
pp. 2050009
Author(s):  
Sisi Tan ◽  
Mingze Xu

Numerical modeling of whole blood still faces great challenges although significant progress has been achieved in recent decades, because of the large differences of physical and geometric properties among blood components, including red blood cells (RBCs), platelets (PLTs) and white blood cells (WBCs). In this work, we develop a three-dimensional (3D) smoothed particle hydrodynamics (SPH) model to study the whole blood in shear flow. The immersed boundary method (IBM) is used to deal with the interaction between the fluid and cells, which provides a possibility to model the RBCs, PLTs and WBCs simultaneously. The deformation of a small capsule, comparable to a PLT in size, is first examined to show the feasibility of SPH model for the PLTs’ behaviors. The motion of a single RBC in shear flow is then studied, and three typical modes, tank-treading, swinging and tumbling motions, are reproduced, which further confirm the reliability of the SPH model. After that, a simulation of the whole blood in shear flow is carried out, in which the margination trend is observed for both PLTs and WBC. This shows the capability of SPH model with IBM for the simulation of whole blood.


2019 ◽  
Vol 95 ◽  
pp. 02011
Author(s):  
Anisa Wulandari ◽  
R.R Dwinanti Rika ◽  
Jessica Sjah ◽  
Herr Soeryantono

Scouring Phenomenon directly occurs on materials due to the motion of water flow and water borne sediments that researchers in the world continue to investigate. Scouring are then continuously developed in Computational Fluid Dynamics (CFD) to be able to estimate scouring effects by analyzing interaction between fluid and solid. Water and solid interaction can be researched by realizing three dimensional numerical modeling (3D) using Smoothed Particle Hydrodynamics Method which is modeling and visualizing fluid behavior with a Lagrangian approach in particle scale (micro scale), a more particle approach realistic than the grid approach. Using this method, the results of each particle can be reviewed either by their property values or visually so that the results are obtained more representatives. One of the factors affecting fluid-solid modeling is spacing ratio between solid particle and fluid particle. To obtain the correct physical results, it is required to consider the influence of spacing ratio and the value of Stiffness Coefficient (Ks) needed.


Sign in / Sign up

Export Citation Format

Share Document