THE EFFECTS OF THE BEYOND MEAN FIELD CORRECTIONS OF FERMI SUPERFLUID GAS IN A DOUBLE-WELL POTENTIAL

2012 ◽  
Vol 23 (11) ◽  
pp. 1250076 ◽  
Author(s):  
WEN-YUAN WANG ◽  
WEN-SHAN DUAN ◽  
JIE LIU

By considering the contribution of the higher-order term representing the lowest approximation of beyond mean field corrections, we investigate a superfluid Fermi gas confined in a double-well potential in Bose–Einstein Condensation (BEC) side of the Bardeen–Cooper–Schrieffer (BCS) to BEC crossover. Two limited cases of deep BEC regime and BEC regime of BCS–BEC crossover, corresponding to the two-body scattering length a sc is small enough and large enough, respectively. We derive a simple two-mode model that could depict the dynamics effectively. With making thorough analysis on the two-mode model and its corresponding classical Hamiltonian, we find that the Josephson oscillation or self-trapping phenomenon could emerge at certain parameters. We find three kinds of the phase states: Josephson oscillation (JO), oscillating-phase-type self-trapping (OPTST) and running-phase-type self-trapping (RPTST). The dependence of these three phase states on the dimensionless interaction parameter y = 1/(kFa sc ) and the initial system energy are given in this paper.

2003 ◽  
Vol 5 (2) ◽  
pp. S119-S123 ◽  
Author(s):  
T G Tiecke ◽  
M Kemmann ◽  
Ch Buggle ◽  
I Shvarchuck ◽  
W von Klitzing ◽  
...  

1999 ◽  
Vol 13 (05n06) ◽  
pp. 625-631 ◽  
Author(s):  
N. AKHMEDIEV ◽  
M. P. DAS ◽  
A. V. VAGOV

We suggest that crucial effect on Bose-Einstein condensation in systems with attractive potential is three-body interaction. We investigate stationary solutions of the Gross-Pitaevskii equation with negative scattering length and a higher-order stabilising term in presence of an external parabolic potential. Stability properties of the condensate are similar to those for thermodynamic systems in statistical physics which have first order phase transitions. We have shown that there are three possible type of stationary solutions corresponding to stable, metastable and unstable phases. Results are discussed in relation to recently observed 7 Li condensate.


2017 ◽  
Vol 9 (5) ◽  
pp. 96
Author(s):  
M. Serhan

In this work I solve the Gross-Pitaevskii equation describing an atomic gas confined in an isotropic harmonic trap by introducing a variational wavefunction of Gaussian type. The chemical potential of the system is calculated and the solutions are discussed in the weakly and strongly interacting regimes. For the attractive system with negative scattering length the maximum number of atoms that can be put in the condensate without collapse begins is calculated.


2019 ◽  
Vol 64 (12) ◽  
pp. 1118
Author(s):  
D. Anchishkin ◽  
I. Mishustin ◽  
O. Stashko ◽  
D. Zhuravel ◽  
H. Stoecker

Thermodynamical properties of an interacting boson system at finite temperatures and zero chemical potential are studied within the framework of the Skyrme-like mean-field toy model. It is assumed that the mean field contains both attractive and repulsive terms. Self-consistency relations between the mean field and thermodynamic functions are derived. It is shown that, for sufficiently strong attractive interactions, this system develops a first-order phase transition via the formation of a Bose condensate. An interesting prediction of the model is that the condensed phase is characterized by a constant total density of particles. It is shown that the energy density exhibits a jump at the critical temperature.


2019 ◽  
Vol 20 (05) ◽  
pp. 2050031
Author(s):  
Sergio Albeverio ◽  
Francesco C. De Vecchi ◽  
Andrea Romano ◽  
Stefania Ugolini

A stochastic approach to the (generic) mean-field limit in Bose–Einstein Condensation is described and the convergence of the ground-state energy as well as of its components are established. For the one-particle process on the path space, a total variation convergence result is proved. A strong form of Kac’s chaos on path-space for the [Formula: see text]-particles probability measures is derived from the previous energy convergence by purely probabilistic techniques notably using a simple chain-rule of the relative entropy. Fisher’s information chaos of the fixed-time marginal probability density under the generic mean-field scaling limit and the related entropy chaos result are also deduced.


1999 ◽  
Vol 54 (3-4) ◽  
pp. 204-212
Author(s):  
J. Choy ◽  
K. L. Liu ◽  
C. F. Lo ◽  
F. So

We study the thermodynamic properties and the Bose-Einstein condensation (BEC) for a finite num-ber N of identical non-interacting bosons in the field of a deep symmetric double-well potential (SDWP). The temperature dependence of the heat capacity C(T) at low temperatures is analyzed, and we derive several generic results which are valid when the energy difference between the first two excited states is sufficiently large. We also investigate numerically the properties of non-interacting bosons in three-dimensional superpositions of deep quartic SDWP's. At low temperatures, we find that C(T) displays microstructures which are sensitive to the value of N and the thermal variation of the condensate frac-tion shows a characteristic plateau. The origin of these features is discussed, and some general conclu-sions are drawn.


Sign in / Sign up

Export Citation Format

Share Document