Simulation of solid body motion in a Newtonian fluid using a vorticity-based pseudo-spectral immersed boundary method augmented by the radial basis functions

2015 ◽  
Vol 26 (05) ◽  
pp. 1550053 ◽  
Author(s):  
Fereidoun Sabetghadam ◽  
Elshan Soltani

The moving boundary conditions are implemented into the Fourier pseudo-spectral solution of the two-dimensional incompressible Navier–Stokes equations (NSE) in the vorticity-velocity form, using the radial basis functions (RBF). Without explicit definition of an external forcing function, the desired immersed boundary conditions are imposed by direct modification of the convection and diffusion terms. At the beginning of each time-step the solenoidal velocities, satisfying the desired moving boundary conditions, along with a modified vorticity are obtained and used in modification of the convection and diffusion terms of the vorticity evolution equation. Time integration is performed by the explicit fourth-order Runge–Kutta method and the boundary conditions are set at the beginning of each sub-step. The method is applied to a couple of moving boundary problems and more than second-order of accuracy in space is demonstrated for the Reynolds numbers up to Re = 550. Moreover, performance of the method is shown in comparison with the classical Fourier pseudo-spectral method.

Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Xu-Qian Fan ◽  
Wenyong Gong

Abstract Path planning has been widely investigated by many researchers and engineers for its extensive applications in the real world. In this paper, a biharmonic radial basis potential function (BRBPF) representation is proposed to construct navigation fields in 2D maps with obstacles, and it therefore can guide and design a path joining given start and goal positions with obstacle avoidance. We construct BRBPF by solving a biharmonic equation associated with distance-related boundary conditions using radial basis functions (RBFs). In this way, invalid gradients calculated by finite difference methods in large size grids can be preventable. Furthermore, paths constructed by BRBPF are smoother than paths constructed by harmonic potential functions and other methods, and plenty of experimental results demonstrate that the proposed method is valid and effective.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
D. A. Maturi ◽  
A. J. M. Ferreira ◽  
A. M. Zenkour ◽  
D. S. Mashat

The static and free vibration analysis of laminated shells is performed by radial basis functions collocation, according to Murakami’s zig-zag (ZZ) function (MZZF) theory . The MZZF theory accounts for through-the-thickness deformation, by considering a ZZ evolution of the transverse displacement with the thickness coordinate. The equations of motion and the boundary conditions are obtained by Carrera’s Unified Formulation and further interpolated by collocation with radial basis functions.


2013 ◽  
Vol 86 ◽  
pp. 37-44 ◽  
Author(s):  
Leopold Vrankar ◽  
Nicolas Ali Libre ◽  
Leevan Ling ◽  
Goran Turk ◽  
Franc Runovc

2009 ◽  
Vol 29 (2) ◽  
pp. 419-437 ◽  
Author(s):  
Gisele Tessari Santos ◽  
Maurício Cardoso de Souza ◽  
Mauri Fortes

A large number of financial engineering problems involve non-linear equations with non-linear or time-dependent boundary conditions. Despite available analytical solutions, many classical and modified forms of the well-known Black-Scholes (BS) equation require fast and accurate numerical solutions. This work introduces the radial basis function (RBF) method as applied to the solution of the BS equation with non-linear boundary conditions, related to path-dependent barrier options. Furthermore, the diffusional method for solving advective-diffusive equations is explored as to its effectiveness to solve BS equations. Cubic and Thin-Plate Spline (TPS) radial basis functions were employed and evaluated as to their effectiveness to solve barrier option problems. The numerical results, when compared against analytical solutions, allow affirming that the RBF method is very accurate and easy to be implemented. When the RBF method is applied, the diffusional method leads to the same results as those obtained from the classical formulation of Black-Scholes equation.


Sign in / Sign up

Export Citation Format

Share Document