Adaptive impulsive cluster synchronization in community network with nonidentical nodes

2016 ◽  
Vol 27 (01) ◽  
pp. 1650010 ◽  
Author(s):  
Xiaoli Gong ◽  
Luyining Gan ◽  
Zhaoyan Wu

In this paper, cluster synchronization in community network with nonidentical nodes is investigated. Through introducing proper adaptive strategy into impulsive control scheme, adaptive impulsive controllers are designed for achieving the cluster synchronization. In this adaptive impulsive control scheme, for any given networks, the impulsive gains can adjust themselves to proper values according to the proposed adaptive strategy when the impulsive intervals are fixed. The impulsive instants can be estimated by solving a sequence of maximum value problems when the impulsive gains are fixed. Both community networks without and with coupling delay are considered. Based on the Lyapunov function method and mathematical analysis technique, two synchronization criteria are derived. Several numerical examples are performed to verify the effectiveness of the derived theoretical results.

2017 ◽  
Vol 28 (07) ◽  
pp. 1750089 ◽  
Author(s):  
Sulan He ◽  
Guisheng Yi ◽  
Zhaoyan Wu

In this paper, exponential synchronization in complex-variable network with distributed delays is investigated. By utilizing intermittent control scheme, some effective controllers are designed. Based on the Lyapunov function method and mathematical analysis technique, some synchronization criteria with respect to the system parameters, control gain and control rate are presented. From the criteria, for any given dynamical network, the needed values of control gains and rate can be easily estimated. Finally, two numerical simulations are performed to verify the derived theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-17
Author(s):  
Yi Zhao ◽  
Jianwen Feng ◽  
Jingyi Wang

The cluster synchronization of linearly coupled complex networks with identical and nonidentical nodes is studied. Without assuming symmetry, we proved that these linearly coupled complex networks could achieve cluster synchronization under certain pinning control schemes. Sufficient conditions guaranteeing cluster synchronization for any initial values are derived by using Lyapunov function methods. Moreover, the adaptive feedback algorithms are proposed to adjust the control strength. Several numerical examples are given to illustrate our theoretical results.


2021 ◽  
Vol 26 (6) ◽  
pp. 993-1011
Author(s):  
Mei Liu ◽  
Jie Chen ◽  
Haijun Jiang ◽  
Zhiyong Yu ◽  
Cheng Hu ◽  
...  

In this paper the problem of synchronization for delayed chaotic systems is considered based on aperiodic intermittent control. First, delayed chaotic systems are proposed via aperiodic adaptive intermittent control. Next, to cut down the control gain, a new generalized intermittent control and its adaptive strategy is introduced. Then, by constructing a piecewise Lyapunov auxiliary function and making use of piecewise analysis technique, some effective and novel criteria are obtained to ensure the global synchronization of delayed chaotic systems by means of the designed control protocols. At the end, two examples with numerical simulations are provided to verify the effectiveness of the theoretical results proposed scheme.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianbao Zhang ◽  
Zhongjun Ma ◽  
Jinde Cao

A recent research indicated that the corticocortical connectivity network of the cat possesses cluster structure and that each cluster in the network is scale-free and has a most connected hub. Motivated by that research, we slightly modify the network model and derive sufficient conditions for cluster synchronization of the modified network based on Lyapunov function method. The obtained results indicate that cluster synchronization can be induced by the hubs of the scale-free networks. In our opinion, the concept of hub-induced synchronization provides a better understanding of cluster synchronization in scale-free networks. Numerical examples are provided to demonstrate the effectiveness of the theoretical results.


Author(s):  
Shuzhen Diao ◽  
Wei Sun ◽  
Le Wang ◽  
Jing Wu

AbstractThis study considers the tracking control problem of the nonstrict-feedback nonlinear system with unknown backlash-like hysteresis, and a finite-time adaptive fuzzy control scheme is developed to address this problem. More precisely, the fuzzy systems are employed to approximate the unknown nonlinearities, and the design difficulties caused by the nonlower triangular structure are also overcome by using the property of fuzzy systems. Besides, the effect of unknown hysteresis input is compensated by approximating an intermediate variable. With the aid of finite-time stability theory, the proposed control algorithm could guarantee that the tracking error converges to a smaller region. Finally, a simulation example is provided to further verify the above theoretical results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ramziya Rifhat ◽  
Zhidong Teng ◽  
Chunxia Wang

AbstractIn this paper, a stochastic SIRV epidemic model with general nonlinear incidence and vaccination is investigated. The value of our study lies in two aspects. Mathematically, with the help of Lyapunov function method and stochastic analysis theory, we obtain a stochastic threshold of the model that completely determines the extinction and persistence of the epidemic. Epidemiologically, we find that random fluctuations can suppress disease outbreak, which can provide us some useful control strategies to regulate disease dynamics. In other words, neglecting random perturbations overestimates the ability of the disease to spread. The numerical simulations are given to illustrate the main theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xuling Wang ◽  
Xiaodi Li ◽  
Gani Tr. Stamov

This paper studies impulsive control systems with finite and infinite delays. Several stability criteria are established by employing the largest and smallest eigenvalue of matrix. Our sufficient conditions are less restrictive than the ones in the earlier literature. Moreover, it is shown that by using impulsive control, the delay systems can be stabilized even if it contains no stable matrix. Finally, some numerical examples are discussed to illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document