Multiple wave solutions for nonlinear burgers equations using the multiple exp-function method

Author(s):  
Khaled A. Gepreel ◽  
E. M. E. Zayed

In this paper, we use the multiple exp-function method to explicity present traveling wave solutions, double-traveling wave (DTW) solutions and triple-traveling wave solutions (TWs) which include one-soliton, double-soliton and triple-soliton solutions for nonlinear partial differential equations (NPDEs) via, the (2+1)-dimensional and (3+1)-dimensional nonlinear Burgers PDEs in mathematical physics. In this work, we build some series of straightforward and new solutions successfully with the help of a computerized symbol computational software package like Maple or Mathematica. We will make some drawings in some cases with specific values for the relevant parameters for each obtained solutions such as the one-traveling wave solutions, double-traveling wave solutions and TWs. This method is efficient and powerful in solving a wide class of NPDEs.

2019 ◽  
Vol 33 (09) ◽  
pp. 1950106 ◽  
Author(s):  
Behzad Ghanbari

In this paper, some new traveling wave solutions to the Hirota–Maccari equation are constructed with the help of the newly introduced method called generalized exponential rational function method. Several families of exact solutions are found corresponding to the equation. To the best of our knowledge, these solutions are new, and have never been addressed in the literature. The graphical interpretation of the solutions is also depicted. Moreover, it is contemplated that the proposed technique can also be employed to another sort of complex models.


2019 ◽  
Vol 33 (10) ◽  
pp. 1950120 ◽  
Author(s):  
Wilson Osafo Apeanti ◽  
Dianchen Lu ◽  
David Yaro ◽  
Saviour Worianyo Akuamoah

In this work, we apply the extended simple equation method to study the dispersive traveling wave solutions of (2+1)-dimensional Nizhnik–Novikov–Vesselov (NNV), Caudrey–Dodd–Gibbon (CDG) and Jaulent–Miodek (JM) hierarchy nonlinear equations. A set of exact, periodic and soliton solutions is obtained for these models confirming the effectiveness of the proposed method. The models studied are important for a number of application areas especially in the field of mathematical physics. Interesting figures are used to illustrate the physical properties of some obtained results. A comparison between obtained solutions and established results in the literature is also given.


2010 ◽  
Vol 65 (3) ◽  
pp. 197-202 ◽  
Author(s):  
Rathinasamy Sakthivel ◽  
Changbum Chun

In this paper, the exp-function method is applied by using symbolic computation to construct a variety of new generalized solitonary solutions for the Chaffee-Infante equation with distinct physical structures. The results reveal that the exp-function method is suited for finding travelling wave solutions of nonlinear partial differential equations arising in mathematical physics


2010 ◽  
Vol 24 (10) ◽  
pp. 1011-1021 ◽  
Author(s):  
JONU LEE ◽  
RATHINASAMY SAKTHIVEL ◽  
LUWAI WAZZAN

The exact traveling wave solutions of (4 + 1)-dimensional nonlinear Fokas equation is obtained by using three distinct methods with symbolic computation. The modified tanh–coth method is implemented to obtain single soliton solutions whereas the extended Jacobi elliptic function method is applied to derive doubly periodic wave solutions for this higher-dimensional integrable equation. The Exp-function method gives generalized wave solutions with some free parameters. It is shown that soliton solutions and triangular solutions can be established as the limits of the Jacobi doubly periodic wave solutions.


2019 ◽  
Vol 33 (03) ◽  
pp. 1950018 ◽  
Author(s):  
Behzad Ghanbari ◽  
Nauman Raza

In this study, we acquire some new exact traveling wave solutions to the nonlinear Schrödinger’s equation in the presence of Hamiltonian perturbations. The compendious integration tool, generalized exponential rational function method (GERFM), is utilized in the presence of quadratic-cubic nonlinear media. The obtained results depict the efficiency of the proposed scheme and are being reported for the first time.


2019 ◽  
Vol 33 (29) ◽  
pp. 1950342 ◽  
Author(s):  
Aly R. Seadawy ◽  
Kalim U. Tariq ◽  
Jian-Guo Liu

In this paper, the auxiliary expansion equation method is applied to compute the analytical wave solutions for (3[Formula: see text]+[Formula: see text]1)-dimensional Boussinesq and Kadomtsev–Petviashvili (KP) equations. A simple transformation is carried out to reduce the set of nonlinear partial differential equations (NPDEs) into ODEs. These obtained results hold numerous traveling wave solutions that are of key importance in elucidating some physical circumstance.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Hatıra Günerhan

Nonlinear partial differential equations (NLPDEs) are an inevitable mathematical tool to explore a large variety of engineering and physical phenomena. Due to this importance, many mathematical approaches have been established to seek their traveling wave solutions. In this study, the researchers examine the Gardner equation via two well-known analytical approaches, namely, the improved tanΘϑ-expansion method and the wave ansatz method. We derive the exact bright, dark, singular, and W-shaped soliton solutions of the Gardner equation. One can see that the methods are relatively easy and efficient to use. To better understand the characteristics of the theoretical results, several numerical simulations are carried out.


Fractals ◽  
2019 ◽  
Vol 27 (01) ◽  
pp. 1940010 ◽  
Author(s):  
FENG GAO ◽  
XIAO-JUN YANG ◽  
YANG JU

The one-dimensional modified Korteweg–de Vries equation defined on a Cantor set involving the local fractional derivative is investigated in this paper. With the aid of the fractal traveling-wave transformation technology, the nondifferentiable traveling-wave solutions for the problem are discussed in detail. The obtained results are accurate and efficient for describing the fractal water wave in mathematical physics.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Zeid I. A. Al-Muhiameed ◽  
Emad A.-B. Abdel-Salam

With the help of the generalized Jacobi elliptic function, an improved Jacobi elliptic function method is used to construct exact traveling wave solutions of the nonlinear partial differential equations in a unified way. A class of nonlinear Schrödinger-type equations including the generalized Zakharov system, the Rangwala-Rao equation, and the Chen-Lee-Lin equation are investigated, and the exact solutions are derived with the aid of the homogenous balance principle.


Sign in / Sign up

Export Citation Format

Share Document