multiple wave
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 56)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Taiwo H. Odugbemi ◽  
Ademola A. Abdulbasit ◽  
Oluwafemi Atolagbe ◽  
Feyisayo Oyolola ◽  
Wasiu Adekunle ◽  
...  

2021 ◽  
Author(s):  
Xiaolong Zhu ◽  
Wei Chen ◽  
Mario Podesta ◽  
Feng Wang ◽  
Deyong Liu ◽  
...  

Abstract Large burst activity, identified as toroidal Alfv\'{e}n eigenmode (TAE) avalanche, occurs frequently in neutral-beam heated plasmas in National Spherical Torus Experiment (NSTX). Based on the typical experimental observation of TAE avalanche on NSTX, a self-consistent nonlinear multiple wave-number ($k_{\parallel}\simeq n/R$, where $n$ toroidal mode-number and $R$ major radius) simulation associated with TAE avalanches is performed using the experimental parameters and profiles before the occurrence of TAE avalanche as the M3D-K input. The wave-wave nonlinear coupling among different modes and the resonant interaction between different modes and energetic-ions during TAE avalanches are identified in the nonlinear multiple wave-number simulations. The resonance overlap during the TAE avalanche is clearly observed in the simulation. It is found that the effective wave-wave coupling and a sufficiently strong drive are two important ingredients for the onset of TAE avalanches. TAE avalanche is considered to be a strongly nonlinear process and it is always accompanied by the simultaneous rapid frequency-chirping and large amplitude bursting of multiple modes and significant energetic-ion losses. The experimental phenomenon is observed on NSTX and is qualitatively reproduced by the simulation results in this work. These findings indicate that the onset of avalanche is triggered by nonlinearity of the system, and are also conducive to understanding the underlying mechanism of avalanche transport of energetic particles in the future burning plasmas, such as ITER.


2021 ◽  
Author(s):  
Xiang Zou ◽  
Zilu Zhu ◽  
Yu Guo ◽  
Hongmiao Zhang ◽  
Yuchen Liu ◽  
...  

Valproic acid (VPA) represents one of the most efficient antiepileptic drugs (AEDs) with either general or focal seizures, but a certain percentage of patients are not recovered or even worse, the mechanism under this phenomenon remains unclear. Here, we retrospectively reviewed 16 patients who received awake craniotomy surgery. Intro-operative high density electrocorticogram (ECoG) was used to record the local field potential (LFP) response to VPA treatment. We found the less efficacy of VPA monotherapy was associated with ECoG spectrum power shift from higher to lower frequency after VPA injection, together with increased synchronization of the LFP. Furthermore, we established the computational model to testify the hypothesis that the ineffectivity of VPA may be caused by excitatory dynamic rebound during the inhibitory power increasing. In addition to test the hypothesis, we employed the mice with Kanic Acid (KA)-induced epileptic model to confirm that it would be inhibited by VPA on behavior and neural activity. Also, the neural activity shows significant rebound on spike firing. Then we discovered that the LFP would increase the power spectral density in multiple wave bands after the VPA delivers. These findings suggest that less efficacy of valproic acid monotherapy in focal seizures may be caused by neural excitatory rebound which mediated by elevated inhibitory power.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Yuan ◽  
Xumin Ni ◽  
Chang Liu ◽  
Yuwen Pan ◽  
Lian Deng ◽  
...  

AbstractWe developed a method, ArchaicSeeker 2.0, to identify introgressed hominin sequences and model multiple-wave admixture. The new method enabled us to discern two waves of introgression from both Denisovan-like and Neanderthal-like hominins in present-day Eurasian populations and an ancient Siberian individual. We estimated that an early Denisovan-like introgression occurred in Eurasia around 118.8–94.0 thousand years ago (kya). In contrast, we detected only one single episode of Denisovan-like admixture in indigenous peoples eastern to the Wallace-Line. Modeling ancient admixtures suggested an early dispersal of modern humans throughout Asia before the Toba volcanic super-eruption 74 kya, predating the initial peopling of Asia as proposed by the traditional Out-of-Africa model. Survived archaic sequences are involved in various phenotypes including immune and body mass (e.g., ZNF169), cardiovascular and lung function (e.g., HHAT), UV response and carbohydrate metabolism (e.g., HYAL1/HYAL2/HYAL3), while “archaic deserts” are enriched with genes associated with skin development and keratinization.


Author(s):  
Giovani L. Vasconcelos ◽  
Arthur A. Brum ◽  
Francisco A. G. Almeida ◽  
Antônio M. S. Macêdo ◽  
Gerson C. Duarte-Filho ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1233
Author(s):  
Sunny Kumar Poguluri ◽  
Dongeun Kim ◽  
Yoon Hyeok Bae

A performance assessment of wave power absorption characteristics of isolated and multiple wave energy converter (WEC) rotors was presented in this study for various wave-heading angles and wave frequencies. Numerical hydrodynamic analysis of the WEC was carried out using the three-dimensional linear boundary element method (BEM) and nonlinear computational fluid dynamics (CFD). Experimental results were used to validate the adopted numerical models. Influence with and without power take-off (PTO) was estimated on both isolated and multiple WEC rotors. Furthermore, to investigate the interaction effect among WECs, a q-factor was used. Incorporation of viscous and PTO damping into the linear BEM solution shows the maximum reduction focused around peak frequency but demonstrated an insignificant effect elsewhere. The q-factor showed both constructive and destructive interactions with the increase of the wave-heading angle and wave frequencies. Further investigation based on the prototype WEC rotor was carried, and calculated results of the linear BEM and the nonlinear CFD were compared. The pitch response and q-factor of the chosen wave frequencies demonstrated satisfactory consistency between the linear BEM and nonlinear CFD results, except for some wave frequencies. Estimated optimal time-averaged power using linear BEM show that the maximum extracted power close to the zero wave-heading angle around the resonance frequency decreases as the wave-heading angle increases. Overall, the linear BEM on the extracted power is overestimated compared with the nonlinear CFD results.


Author(s):  
Bang-Qing Li

Abstract In investigation is the generalized Vakhnenko--Parkes equation (GVPE) with time-dependent coefficients. GVPE is a new nonlinear model connecting to high-frequency wave propagation in relaxing media with variable perturbations. An extended Hirota bilinear method is proposed to construct soliton, breather and multiple-wave soliton solutions. The soliton solutions can degenerate into existing single soliton solutions. The breather and multiple-wave soliton solutions are first obtained. By utilizing the two free functions involved in the solutions, the dynamics of some novel excited breathers and multiple-wave solitons are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document