SIMULATION OF GENETIC ALGORITHMS ON MIMD MULTICOMPUTERS

1992 ◽  
Vol 02 (04) ◽  
pp. 381-389 ◽  
Author(s):  
I. DE FALCO ◽  
R. DEL BALIO ◽  
E. TARANTINO ◽  
R. VACCARO

In this paper, a Parallel Genetic Algorithm has been developed and mapped onto a coarse grain MIMD multicomputer whose processors have been configured in a fully connected chordal ring topology. In this way, parallel diffusion processes of good local information among processors have been carried out. The Parallel Genetic Algorithm has been applied, specifically, to the Travelling Salesman Problem. Many experiments have been performed with different combinations of genetic operators; the test results suggest that PMX crossover can be avoided by using only the inversion genetic operator and that a diffusion process leads to improved search in Parallel Genetic Algorithms.

Author(s):  
Abdullah Türk ◽  
Dursun Saral ◽  
Murat Özkök ◽  
Ercan Köse

Outfitting is a critical stage in the shipbuilding process. Within the outfitting, the construction of pipe systems is a phase that has a significant effect on time and cost. While cutting the pipes required for the pipe systems in shipyards, the cutting process is usually performed randomly. This can result in large amounts of trim losses. In this paper, we present an approach to minimize these losses. With the proposed method it is aimed to base the pipe cutting process on a specific systematic. To solve this problem, Genetic Algorithms (GA), which gives successful results in solving many problems in the literature, have been used. Different types of genetic operators have been used to investigate the search space of the problem well. The results obtained have proven the effectiveness of the proposed approach.


This paper aims produce an academic scheduling system using Genetic Algorithm (GA) to solve the academic schedule. Factors to consider in academic scheduling are the lecture to be held, the available room, the lecturers and the time of the lecturer, the suitability of the credits with the time of the lecture, and perhaps also the time of Friday prayers, and so forth. Genetic Algorithms can provide the best solution for some solutions in dealing with scheduling problems. Based on the test results, the resulting system can automate the scheduling of lectures properly. Determination of parameter values in Genetic Algorithm also gives effect in producing the solution of lecture schedule


Author(s):  
Patricia Brackin ◽  
Jonathan Colton

Abstract As part of a strategy for obtaining preliminary design specifications from the House of Quality, genetic algorithms were used to generate and optimize preliminary design specifications for an automotive case study. This paper describes the House of Quality for the automotive case study. In addition, the genetic algorithm chosen, the genetic coding, the methods used for mutation and reproduction, and the fitness and penalty functions are descrobed. Methods for determining convergence are examined. Finally, test results show that the genetic algorithm produces reasonable preliminary design specifications.


2013 ◽  
Vol 411-414 ◽  
pp. 2013-2016 ◽  
Author(s):  
Guo Zhi Wen

The traveling salesman problem is analyzed with genetic algorithms. The best route map and tendency of optimal grade of 500 cities before the first mutation, best route map after 15 times of mutation and tendency of optimal grade of the final mutation are displayed with algorithm animation. The optimal grade is about 0.0455266 for the best route map before the first mutation, but is raised to about 0.058241 for the 15 times of mutation. It shows that through the improvements of algorithms and coding methods, the efficiency to solve the traveling problem can be raised with genetic algorithms.


Author(s):  
Tarik Eltaeib ◽  
Julius Dichter

This paper examines the correlation between numbers of computer cores in parallel genetic algorithms. The objective to determine the linear polynomial complementary equation in order represent the relation between number of parallel processing and optimum solutions. Model this relation as optimization function (f(x)) which able to produce many simulation results. F(x) performance is outperform genetic algorithms. Compression results between genetic algorithm and optimization function is done. Also the optimization function give model to speed up genetic algorithm. Optimization function is a complementary transformation which maps a TSP given to linear without changing the roots of the polynomials.


Feature Selection in High Dimensional Datasets is a combinatorial problem as it selects the optimal subsets from N dimensional data having 2N possible subsets. Genetic Algorithms are generally a good choice for feature selection in large datasets, though for some high dimensional problems it may take varied amount of time - few seconds, few hours or even few days. Therefore, it is important to use Genetic Algorithms that can give quality results in reasonably acceptable time limit. For this purpose, it is becoming necessary to implement Genetic Algorithms in an efficient manner. In this paper, a Master Slave Parallel Genetic Algorithm is implemented as a Feature Selection procedure to diminish the time intricacies of sequential genetic algorithm. This paper describes the speed gains in parallel Master-Slave Genetic Algorithm and also discusses the theoretical analysis of optimal number of slaves required for an efficient master slave implementation. The experiments are performed on three high-dimensional gene expression data. As Genetic Algorithm is a wrapper technique and takes more time to find the importance of any feature, Information Gain technique is used first as pre-processing task to remove the irrelevant features.


2008 ◽  
Vol 18 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Jozef Kratica ◽  
Vera Kovacevic-Vujcic ◽  
Mirjana Cangalovic

In this paper we consider the NP-hard problem of determining the strong metric dimension of graphs. The problem is solved by a genetic algorithm that uses binary encoding and standard genetic operators adapted to the problem. This represents the first attempt to solve this problem heuristically. We report experimental results for the two special classes of ORLIB test instances: crew scheduling and graph coloring.


Author(s):  
Liang Lei ◽  
TongQing Wang ◽  
Jun Peng ◽  
Bo Yang

In the research of Web content-based image retrieval, how to reduce more of the image dimensions without losing the main features of the image is highlighted. Many features of dimensional reduction schemes are determined by the breaking of higher dimensional general covariance associated with the selection of a particular subset of coordinates. This paper starts with analysis of commonly used methods for the dimension reduction of Web images, followed by a new algorithm for nonlinear dimensionality reduction based on the HSV image features. The approach obtains intrinsic dimension estimation by similarity calculation of two images. Finally, some improvements were made on the Parallel Genetic Algorithm (APGA) by use of the image similarity function as the self-adaptive judgment function to improve the genetic operators, thus achieving a Web image dimensionality reduction and similarity retrieval. Experimental results illustrate the validity of the algorithm.


2002 ◽  
Vol 2 (2) ◽  
pp. 106-114 ◽  
Author(s):  
Patricia Brackin ◽  
Jonathan S. Colton

As part of a strategy for obtaining preliminary design specifications from the House of Quality, genetic algorithms are used to generate and optimize preliminary design specifications for an automotive case study. This paper describes the House of Quality for an automotive case study. In addition, the genetic algorithm chosen, the genetic coding, the methods used for mutation and reproduction, and the fitness and penalty functions are described. Methods for determining convergence are examined. Finally, test results show that the genetic algorithm produces reasonable preliminary design specifications.


Sign in / Sign up

Export Citation Format

Share Document