MAINTENANCE OF SYSTEMS BY MEANS OF REPLACEMENTS AND REPAIRS: THE CASE OF PHASE-TYPE DISTRIBUTIONS

2007 ◽  
Vol 24 (03) ◽  
pp. 421-434 ◽  
Author(s):  
DELIA MONTORO-CAZORLA ◽  
RAFAEL PÉREZ-OCÓN

We present two models for studying a system maintained by means of imperfect repairs before a replacement or a perfect repair is allowed. The operational and repair times follow phase-type distributions. Imperfect repair means that successive operational times decrease and successive repair times increase. Under these assumptions, models that govern the systems are Markov processes, whose structures are determined, and several performance measures are calculated in transient and stationary regime. These models extend other previously studied in the literature. The incorporation of phase-type distributions allows to apply the model to many other distributions. A numerical example illustrates the calculations and allows a comparison of the results.

2000 ◽  
Vol 37 (03) ◽  
pp. 756-764 ◽  
Author(s):  
Valeri T. Stefanov

A unifying technology is introduced for finding explicit closed form expressions for joint moment generating functions of various random quantities associated with some waiting time problems. Sooner and later waiting times are covered for general discrete- and continuous-time models. The models are either Markov chains or semi-Markov processes with a finite number of states. Waiting times associated with generalized phase-type distributions, that are of interest in survival analysis and other areas, are also covered.


2006 ◽  
Vol 23 (03) ◽  
pp. 311-327 ◽  
Author(s):  
RAFAEL PÉREZ-OCÓN ◽  
DELIA MONTORO-CAZORLA ◽  
JUAN ELOY RUIZ-CASTRO

An M-unit system in dynamic environment with operational and repair times following phase-type distributions and incorporating geometrical processes is considered. A general Markov process with vectorial states is the appropriate structure for modeling this system. A transient analysis is performed for this complex system and the transition probabilities are calculated. Some performance measures of general interest in the study of systems are obtained using an algorithmic approach, and applied to G-out-of-M systems. A numerical example is presented and the transient performance measures are calculated and compared with the stationary ones. This paper extends previous reliability systems, that can be considered as particular cases of this one. Throughout the paper, the mathematical expressions are given by algorithmic methods, that emphasized the utility of phase-type distributions in the analysis of lifetime data.


2000 ◽  
Vol 37 (3) ◽  
pp. 756-764 ◽  
Author(s):  
Valeri T. Stefanov

A unifying technology is introduced for finding explicit closed form expressions for joint moment generating functions of various random quantities associated with some waiting time problems. Sooner and later waiting times are covered for general discrete- and continuous-time models. The models are either Markov chains or semi-Markov processes with a finite number of states. Waiting times associated with generalized phase-type distributions, that are of interest in survival analysis and other areas, are also covered.


1984 ◽  
Vol 16 (1) ◽  
pp. 10-10
Author(s):  
Guy Latouche

One considers semi-Markov processes using phase-type distributions, such that the marginal distribution of the interevent times are identically distributed but not independent. By suitably choosing the phase-type distributions, one obtains an exponential marginal distribution.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 363
Author(s):  
Delia Montoro-Cazorla ◽  
Rafael Pérez-Ocón ◽  
Alicia Pereira das Neves-Yedig

A longitudinal study for 847 bladder cancer patients for a period of fifteen years is presented. After the first surgery, the patients undergo successive ones (recurrences). A state-model is selected for analyzing the evolution of the cancer, based on the distribution of the times between recurrences. These times do not follow exponential distributions, and are approximated by phase-type distributions. Under these conditions, a multidimensional Markov process governs the evolution of the disease. The survival probability and mean times in the different states (levels) of the disease are calculated empirically and also by applying the Markov model, the comparison of the results indicate that the model is well-fitted to the data to an acceptable significance level of 0.05. Two sub-cohorts are well-differenced: those reaching progression (the bladder is removed) and those that do not. These two cases are separately studied and performance measures calculated, and the comparison reveals details about the characteristics of the patients in these groups.


2014 ◽  
Vol 30 (4) ◽  
pp. 576-597 ◽  
Author(s):  
V. Ramaswami ◽  
N. C. Viswanath

2004 ◽  
Vol 36 (1) ◽  
pp. 116-138 ◽  
Author(s):  
Yonit Barron ◽  
Esther Frostig ◽  
Benny Levikson

An R-out-of-N repairable system, consisting of N independent components, is operating if at least R components are functioning. The system fails whenever the number of good components decreases from R to R-1. A failed component is sent to a repair facility. After a failed component has been repaired it is as good as new. Formulae for the availability of the system using Markov renewal and semi-regenerative processes are derived. We assume that either the repair times of the components are generally distributed and the components' lifetimes are phase-type distributed or vice versa. Some duality results between the two systems are obtained. Numerical examples are given for several distributions of lifetimes and of repair times.


2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


2002 ◽  
Vol 30 (3) ◽  
pp. 6-8 ◽  
Author(s):  
Alma Riska ◽  
Vesselin Diev ◽  
Evgenia Smirni

1987 ◽  
Vol 24 (3) ◽  
pp. 696-708 ◽  
Author(s):  
Arie Hordijk ◽  
Ad Ridder

A general method to obtain insensitive upper and lower bounds for the stationary distribution of queueing networks is sketched. It is applied to an overflow model. The bounds are shown to be valid for service distributions with decreasing failure rate. A characterization of phase-type distributions with decreasing failure rate is given. An approximation method is proposed. The methods are illustrated with numerical results.


Sign in / Sign up

Export Citation Format

Share Document