RESOLUTION OF THE Be/B SOLAR NEUTRINO FLUX ANOMALY IN THE RESONANT SPIN-FLAVOR PRECESSION SCENARIO WITH TWISTING SOLAR MAGNETIC FIELDS

2000 ◽  
Vol 15 (05) ◽  
pp. 351-360
Author(s):  
S. DEV ◽  
JYOTI DHAR SHARMA

The Be/B neutrino flux anomaly has been examined within the framework of the resonant spin-flavor precession scenario with twisting solar magnetic fields. It is found that the twist of the toroidal component of the solar magnetic field, leads naturally to a complete disappearance of 7 Be neutrinos emerging from one of the solar hemispheres. However, the 7 Be neutrino flux emerging from the other solar hemisphere with oppositely twisted magnetic field must survive completely. Thus, this scenario predicts seasonal variations of the 7 Be neutrino flux to be observed in the Borexino experiment.

1971 ◽  
Vol 43 ◽  
pp. 76-83 ◽  
Author(s):  
R. C. Smithson ◽  
R. B. Leighton

For many years solar magnetic fields have been measured by a variety of techniques, all of which exploit the Zeeman splitting of lines in the solar spectrum. One of these techniques (Leighton, 1959) involves a photographic subtraction of two monochromatic images to produce a picture of the Sun in which the line-of-sight component of the solar magnetic field appears as various shades of gray. In a magnetogram made by this method, zero field strength appears as neutral gray, while magnetic fields of one polarity or the other appear as lighter or darker areas, respectively. Figure 1 shows such a magnetogram.


1998 ◽  
Vol 13 (15) ◽  
pp. 1163-1170 ◽  
Author(s):  
B. C. CHAUHAN ◽  
U. C. PANDEY ◽  
S. DEV

Even though the standard solar model (SSM) has been very successful in predicting the thermal and nuclear evolution of the Sun, it does not throw enough light on solar magnetic activity. In the absence of a generally accepted theory of solar dynamo, various general arguments have been put forth to constrain solar magnetic fields. In the absence of reliable knowledge of solar magnetic fields from available astrophysical data, it may be worthwhile to constrain the solar magnetic fields from solar neutrino observations assuming Resonant Spin-Flavor Precession (RSFP) to be responsible for the solar neutrino deficit. The configuration of solar magnetic field derived in this work is in reasonably good agreement with the magnetic field distribution proposed by Akhmedov et al. (Sov. Phys. JETP68, 250 (1989)). However, the magnetic field distribution in the radiation zone used by Pulido (Phys. Rep.211, 167 (1992)) is ruled out. The magnitude of the magnetic field in the radiation and convective zones of the Sun are very sensitive to the value chosen for the neutrino magnetic moment. However, any change in the value of neutrino magnetic moment does not affect the magnetic field distribution as it only scales the magnetic field strength at different points by the same amount.


1993 ◽  
Vol 141 ◽  
pp. 149-155 ◽  
Author(s):  
Guoxiang Ai

AbstractThe historical development of optical instruments for solar physics is outlined, from white light to unpolarized and polarized monochromatic light, to Stokes profiles and simultaneous fields of view, from points to lines, plane to cube. An evolutionary series and classificaton of instruments for the solar magnetic field is described. As a next step the 2-D real time polarizing spectrograph has been proposed. The planned instruments in China for measurements of solar magnetic and velocity fields are briefly introduced.


1989 ◽  
Vol 04 (02) ◽  
pp. 111-114 ◽  
Author(s):  
PROBHAS RAYCHAUDHURI

It is shown that neutrino flip through the magnetic field of the convection zone is not responsible for the anticorrelation between the solar neutrino flux and the sunspot number.


2000 ◽  
Vol 15 (22n23) ◽  
pp. 1445-1460 ◽  
Author(s):  
S. DEV ◽  
JYOTI DHAR SHARMA

Resonant spin-flavor precession scenario with twisting solar magnetic fields has been confronted with the solar neutrino data from various ongoing experiments. In particular, the anticorrelation apparent in the Homestake solar neutrino data has been taken seriously to constrain the twisting profiles of the magnetic field in the convective zone of the Sun. The twisting profiles, thus derived, have been used to calculate the neutrino detection rates for the Homestake, Kamiokande (super-Kamiokande) and the gallium experiments. It is found that the presence of twisting reduces the degree of anticorrelation in all the solar neutrino experiments. However, the anticorrelation in the Homestake experiment is expected to be more pronounced. Moreover, the anticorrelation of solar neutrino flux emerging from the southern solar hemisphere is expected to be stronger than that for the neutrinos emerging from the northern solar hemisphere.


1976 ◽  
Vol 71 ◽  
pp. 47-67 ◽  
Author(s):  
V. Bumba

The characteristics of the large-scale distribution of the solar magnetic fields on the basis of a series of solar magnetic synoptic charts covering more than 15 years of observations are given. The major part of our information concerns the morphology and only some results deal with the kinematics of the field distribution. Results of averaged solar magnetic field fluxes and polarity reversal studies as well as of preliminary investigation of the very-low angular resolution magnetic measurements are given. The regular zonal and sectoral distribution of photospheric background fields, the different role or visibility of structures in both polarities is discussed. The reflection of both main types of the longitudinal distribution of large-scale solar background magnetic fields (the 27-day, the 28–29-day successions, the ‘supergiant’ structures) in the interplanetary magnetic field distribution is also considered.


1998 ◽  
Vol 11 (2) ◽  
pp. 877-879
Author(s):  
J.-C. Vial

Excellent review papers have been presented in this session by S. Solanki (Manifestations of solar magnetic fields), K. Dere (Coronal Mass Ejections and interplanetary ejecta) and W. Droege (Particle acceleration by waves and fields) and the relevant texts can be found in this volume.The Joint Discussion benefited from three contributed papers: X-Ray/Radio network flares of the quiet Sun by A.O. Benz, S. Krucker, L.W. Acton, and T.S. Bastian (presented by A.O. Benz) Radio observations of coronal X-ray jets by M.R. Kundu


1998 ◽  
Vol 11 (2) ◽  
pp. 857-860
Author(s):  
S.K. Solanki

AbstractThe magnetism of the Sun manifests itself in innumerable ways, many of which constitute what is referred to as solar magnetic activity, while others are counted among the phenomena of the quiet Sun. After a brief overview of the structure of the solar magnetic field, a few examples of its manifestations are pointed out.


1994 ◽  
Vol 09 (16) ◽  
pp. 1479-1488 ◽  
Author(s):  
A.YU. IGNATIEV ◽  
G.C. JOSHI

We have considered the effect of the reduction of the solar neutrino flux on earth due to the deflection of the charged neutrino by the magnetic field of the solar convective zone. The antisymmetry of this magnetic field about the plane of the solar equator induces the anisotropy of the solar neutrino flux thus creating the deficit of the neutrino flux on the earth. The deficit has been estimated in terms of solar and neutrino parameters and the condition of a 50% deficit has been obtained: Qν grad H≥10−18 eG/cm where Qν is the neutrino electric charge, grad H is the gradient of the solar toroidal magnetic field, e is the electron charge. Some attractive experimental consequences of this scenario are qualitatively discussed.


Sign in / Sign up

Export Citation Format

Share Document