THE QUANTUM TRAJECTORY APPROACH TO GEOMETRIC PHASE FOR OPEN SYSTEMS

2005 ◽  
Vol 20 (22) ◽  
pp. 1635-1654 ◽  
Author(s):  
ANGELO CAROLLO

The quantum jump method for the calculation of geometric phase is reviewed. This is an operational method to associate a geometric phase to the evolution of a quantum system subjected to decoherence in an open system. The method is general and can be applied to many different physical systems, within the Markovian approximation. As examples, two main source of decoherence are considered: dephasing and spontaneous decay. It is shown that the geometric phase is to very large extent insensitive to the former, i.e. it is independent of the number of jumps determined by the dephasing operator.

Author(s):  
Andrew C. Doherty ◽  
A. Szorkovszky ◽  
G. I. Harris ◽  
W. P. Bowen

We revisit the stochastic master equation approach to feedback cooling of a quantum mechanical oscillator undergoing position measurement. By introducing a rotating wave approximation for the measurement and bath coupling, we can provide a more intuitive analysis of the achievable cooling in various regimes of measurement sensitivity and temperature. We also discuss explicitly the effect of backaction noise on the characteristics of the optimal feedback. The resulting rotating wave master equation has found application in our recent work on squeezing the oscillator motion using parametric driving and may have wider interest.


Author(s):  
Y. Yugra ◽  
F. De Zela

Coherence and quantum correlations have been identified as fundamental resources for quantum information tasks. As recently shown, these resources can be interconverted. In multipartite systems, entanglement represents a prominent case among quantum correlations, one which can be activated from coherence. All this makes coherence a key resource for securing the operational advantage of quantum technologies. When dealing with open systems, decoherence hinders full exploitation of quantum resources. Here, we present a protocol that allows reaching the maximal achievable amount of coherence in an open quantum system. By implementing our protocol, or suitable variants of it, coherence losses might be fully compensated, thereby leading to coherence revivals. We provide an experimental proof of principle of our protocol through its implementation with an all-optical setup.


1983 ◽  
Vol 61 (11) ◽  
pp. 1479-1485 ◽  
Author(s):  
I. D. Cox ◽  
W. E. Hagston ◽  
B. J. Holmes

Damping theory of an open system S is usually formulated in terms of projection operators which introduce nonuniqueness into the analysis. An insight into the nature of the approximations that arise from this aspect of the formalism is revealed by considering systems of varying complexity. This leads to the conclusion that the results of higher order perturbation theory approximations may not be meaningful.


2004 ◽  
Vol 70 (4) ◽  
Author(s):  
Ingo Kamleitner ◽  
James D. Cresser ◽  
Barry C. Sanders

1998 ◽  
Vol 151 (4-6) ◽  
pp. 395-405 ◽  
Author(s):  
F. Casagrande ◽  
M. Garavaglia ◽  
A. Lulli

2012 ◽  
Vol 14 ◽  
pp. 376-382
Author(s):  
ANDRZEJ HERDEGEN

Casimir effect, in most general terms, is the backreaction of a quantum system responding to an adiabatic change of external conditions. This backreaction is expected to be quantitatively measured by a change in the expectation value of a certain energy observable of the system. However, for this concept to be applicable, the system has to retain its identity in the process. Most prevailing tendencies in the analysis of the effect seem to ignore this question. In general, a quantum theory is defined by an algebra of observables, whose representations by operators in a Hilbert space define concrete physical systems described by the theory. A quantum system retains its identity if both the algebra as well as its representation do not change. We discuss the resulting restrictions for admissible models of changing external conditions. These ideas are applied to quantum field models. No infinities arise, if the algebraic demands are respected.


Sign in / Sign up

Export Citation Format

Share Document