scholarly journals COMMUTATOR ANOMALY IN NONCOMMUTATIVE QUANTUM MECHANICS

2006 ◽  
Vol 21 (39) ◽  
pp. 2971-2976 ◽  
Author(s):  
SAYIPJAMAL DULAT ◽  
KANG LI

In this paper, the Schrödinger equation on noncommutative phase space is given by using a generalized Bopp's shift. Then the anomaly term of commutator of arbitrary physical observable operators on noncommutative phase space is obtained. Finally, the basic uncertainty relations for space–space and space–momentum as well as momentum–momentum operators in noncommutative quantum mechanics (NCQM), and uncertainty relation for arbitrary physical observable operators in NCQM are discussed.

2019 ◽  
Vol 64 (11) ◽  
pp. 983 ◽  
Author(s):  
Liang Shi-Dong ◽  
T. Harko

The conceptual incompatibility of spacetime in gravity and quantum physics implies the existence of noncommutative spacetime and geometry on the Planck scale. We present the formulation of a noncommutative quantum mechanics based on the Seiberg–Witten map, and we study the Aharonov–Bohm effect induced by the noncommutative phase space. We investigate the existence of the persistent current in a nanoscale ring with an external magnetic field along the ring axis, and we introduce two observables to probe the signal coming from the noncommutative phase space. Based on this formulation, we give a value-independent criterion to demonstrate the existence of the noncommutative phase space.


2021 ◽  
Vol 14 (1) ◽  
pp. 59-70

Abstract: In this work, we have obtained analytically the bound state solution for both the relativistic modified Klein-Gordon equation MKG and non-relativistic modified Schrödinger equation for the modified unequal mixture of scalar and time-like vector Cornell (MUSVC) potentials in the relativistic noncommutative three-dimensional real space (RNC: 3D-RS) symmetries. The unequal mixture of scalar and time-like vector Cornell potentials is extended by including new radial terms. Also, MUSVC potentials are proposed as a quark-antiquark interaction potential for studying the masses of heavy and heavy-light mesons in (RNC: 3D-RSP) symmetries. The ordinary Bopp’s shift method and perturbation theory are surveyed to get generalized excited states’ energy as a function of shift energy and the energy of USVC potentials in the relativistic quantum mechanics RQM and NRQM. Furthermore, the obtained preservative solutions of discrete spectrum depended on the parabolic cylinder function, the gamma function, the ordinary discrete atomic quantum numbers, as well as the potential parameters and the two infinitesimal parameters (θ and σ) which are generated with the effect of (space-space) noncommutativity properties. We have also applied our obtained results for bosonic particles, like the charmonium cc ¯ and bottomonium bb ¯ mesons (that have quark and antiquark flavour) and cs ¯ mesons with spin-(0 and 1) and shown that MKG equation under MUSVC potentials becomes similar to the Duffin–Kemmer equation. We have shown that the degeneracy of the initial spectral under USVC potentials in RQM is changed radically and replaced by the newly triplet degeneracy of energy levels under the MUSVC potentials; this gives more precision in measurement and better results compared to the results of ordinary RQM under USVC potentials. Keywords: Klein-Gordon equation, Schrödinger equation, Unequal mixture of scalar and time-like vector Cornell potentials, Noncommutative quantum mechanics, Star product, Bopp’s shift method, Heavy–light mesons. PACS Nos.: 03.65.Ta; 03.65.Ca; 03.65.Ge.


2016 ◽  
Vol 31 (19) ◽  
pp. 1630025 ◽  
Author(s):  
Laure Gouba

Four formulations of quantum mechanics on noncommutative Moyal phase spaces are reviewed. These are the canonical, path-integral, Weyl–Wigner and systematic formulations. Although all these formulations represent quantum mechanics on a phase space with the same deformed Heisenberg algebra, there are mathematical and conceptual differences which we discuss.


2005 ◽  
Vol 20 (28) ◽  
pp. 2165-2174 ◽  
Author(s):  
KANG LI ◽  
JIANHUA WANG ◽  
CHIYI CHEN

The representations of the algebra of coordinates and momenta of noncommutative phase space are given. We study, as an example, the harmonic oscillator in noncommutative space of any dimension. Finally the map of Schrödinger equation from noncommutative space to commutative space is obtained.


In this work we present a brief review about quantum mechanics in phase space. The approach discussed is based in the notion of symplectic structure and star-operators. In this sense, unitary representations for the Galilei group are construct, and the Schrodinger equation in phase space is derived. The connection between phase space amplitudes and Wigner function is presented. As a new result we solved the Schrodinger equation in phase space for simple pendulum. PACS Numbers: 11.10.Nx, 11.30.Cp, 05.20.Dd


2016 ◽  
Vol 71 (9) ◽  
pp. 823-829
Author(s):  
Si-Jia Liu ◽  
Yu-Fei Zhang ◽  
Zheng-Wen Long ◽  
Jian Jing

AbstractThe charged particle confined by a harmonic potential in a noncommutative planar phase space interacting with a homogeneous dynamical magnetic field and Aharonov-Bohm potentials is studied. We find that the canonical orbital angular momenta of the reduced models, which are obtained by setting the mass and a dimensionless parameter to zero, take fractional values. These fractional angular momenta are not only determined by the flux inside the thin long solenoid but also affected by the noncommutativities of phase space.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
H. Hassanabadi ◽  
Z. Molaee ◽  
S. Zarrinkamar

We consider the Schrödinger equation under an external magnetic field in two-dimensional noncommutative phase space with an explicit minimal length relation. The eigenfunctions are reported in terms of the Jacobi polynomials, and the explicit form of energy eigenvalues is reported.


Sign in / Sign up

Export Citation Format

Share Document