physical observable
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Horacio Casini ◽  
Javier M. Magán

We review a notion of completeness in QFT arising from the analysis of basic properties of the set of operator algebras attached to regions. In words, this completeness asserts that the physical observable algebras produced by local degrees of freedom are the maximal ones compatible with causality. We elaborate on equivalent statements to this completeness principle such as the non-existence of generalized symmetries and the uniqueness of the net of algebras. We clarify that for non-complete theories, the existence of generalized symmetries is unavoidable and further that they always come in dual pairs with precisely the same “size”. Moreover, the dual symmetries are always broken together, be it explicitly or effectively. Finally, we comment on several issues raised in recent literature, such as the relationship between completeness and modular invariance, dense sets of charges, and absence of generalized symmetries in the bulk of holographic theories.


Author(s):  
F. Tamburini ◽  
F. Feleppa ◽  
B. Thidé

We describe and present the first observational evidence that light propagating near a rotating black hole is twisted in phase and carries orbital angular momentum. The novel use of this physical observable as an additional tool for the previously known techniques of gravitational lensing allows us to directly measure, for the first time, the spin parameter of a black hole. With the additional information encoded in the orbital angular momentum, not only can we reveal the actual rotation of the compact object, but we can also use rotating black holes as probes to test general relativity.


2021 ◽  
Vol 7 (23) ◽  
pp. eabg8118
Author(s):  
Rodion Kononchuk ◽  
Joshua Feinberg ◽  
Joseph Knee ◽  
Tsampikos Kottos

Typical sensors detect small perturbations by measuring their effects on a physical observable, using a linear response principle (LRP). It turns out that once LRP is abandoned, new opportunities emerge. A prominent example is resonant systems operating near Nth-order exceptional point degeneracies (EPDs) where a small perturbation ε ≪ 1 activates an inherent sublinear response ∼εN≫ε in resonant splitting. Here, we propose an alternative sublinear optomechanical sensing scheme that is rooted in Wigner’s cusp anomalies (WCAs), first discussed in the framework of nuclear reactions: a frequency-dependent square-root singularity of the differential scattering cross section around the energy threshold of a newly opened channel, which we use to amplify small perturbations. WCA hypersensitivity can be applied in a variety of sensing applications, besides optomechanical accelerometry discussed in this paper. Our WCA platforms are compact, do not require a judicious arrangement of active elements (unlike EPD platforms), and, if chosen, can be cavity free.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Patricio Gaete ◽  
J. A. Helayël-Neto ◽  
L. P. R. Ospedal

We address the effect of an anomalous triple gauge boson couplings on a physical observable for the electroweak sector of the Standard Model, when the S U 2 L ⊗ U 1 Y symmetry is spontaneously broken by the Higgs mechanism to U 1 e m . Our calculation is done within the framework of the gauge-invariant, but path-dependent variable formalism is an alternative to the Wilson loop approach. Our result shows that the interaction energy is the sum of a Yukawa and a linear potential, leading to the confinement of static probe charges. The point we wish to emphasize, however, is that the anomalous triple gauge boson couplings ( Z γ γ ) contributes to the confinement for distances on the intranuclear scale.


Author(s):  
Roberto Niardi

In this paper, DeWitt’s formalism for field theories is presented; it provides a framework in which the quantization of fields possessing infinite-dimensional invariance groups may be carried out in a manifestly covariant (non-Hamiltonian) fashion, even in curved space-time. Another important virtue of DeWitt’s approach is that it emphasizes the common features of apparently very different theories such as Yang–Mills theories and General Relativity; moreover, it makes it possible to classify all gauge theories in three categories characterized in a purely geometrical way, i.e. by the algebra which the generators of the gauge group obey; the geometry of such theories is the fundamental reason underlying the emergence of ghost fields in the corresponding quantum theories, too. These “tricky extra particles”, as Feynman called them in 1964, contribute to a physical observable such as the stress-energy tensor, which can be expressed in terms of Feynman’s Green function itself. Therefore, an entire section is devoted to the study of the Green functions of the neutron scalar meson: in flat space-time, the choice of a particular Green’s function is the choice of an integration contour in the “momentum” space; in curved space-time the momentum space is no longer available, and the definition of the different Green functions requires a careful discussion itself. After the necessary introduction of bitensors, world function and parallel displacement tensor, an expansion for the Feynman propagator in curved space-time is obtained. Most calculations are explicitly shown.


2020 ◽  
Vol 553 ◽  
pp. 124274
Author(s):  
Chunhuan Xiang ◽  
Ai Min Chen ◽  
Yao Heng Su ◽  
Honglei Wang

2019 ◽  
Vol 492 (1) ◽  
pp. L22-L27 ◽  
Author(s):  
Fabrizio Tamburini ◽  
Bo Thidé ◽  
Massimo Della Valle

ABSTRACT We present the first observational evidence that light propagating near a rotating black hole is twisted in phase and carries orbital angular momentum (OAM). This physical observable allows a direct measurement of the rotation of the black hole. We extracted the OAM spectra from the radio intensity data collected by the Event Horizon Telescope from around the black hole M87* by using wavefront reconstruction and phase recovery techniques and from the visibility amplitude and phase maps. This method is robust and complementary to black hole shadow circularity analyses. It shows that the M87* rotates clockwise with an estimated rotation parameter a = 0.90 ± 0.05 with an $\sim 95{{\ \rm per\ cent}}$ confidence level (c.l.) and an inclination i = 17° ± 2°, equivalent to a magnetic arrested disc with an inclination i = 163° ± 2°. From our analysis, we conclude that, within a 6σ c.l., the M87* is rotating.


2018 ◽  
Vol 32 (22) ◽  
pp. 1850243
Author(s):  
Sara Kaviani ◽  
Farhad H. Jafarpour

In order to study the stochastic Markov processes conditioned on a specific value of a time-integrated observable, the concept of ensembles of trajectories has been recently used extensively. In this paper, we consider a generic reaction–diffusion process consisting of classical particles with nearest-neighbor interactions on a one-dimensional lattice with periodic boundary conditions. By introducing a time-integrated current as a physical observable, we have found certain constraints on the microscopic transition rates of the process under which the effective process contains local interactions; however, with rescaled transition rates comparing to the original process. A generalization of the linear Glauber model is then introduced and studied in detail as an example. Associated effective dynamics of this model is investigated and constants of motion are obtained.


Sign in / Sign up

Export Citation Format

Share Document