scholarly journals U(1) LATTICE GAUGE MODEL FOR UNCONVENTIONAL SUPERCONDUCTORS: LINK COOPER PAIR AS DUAL GAUGE FIELD

2008 ◽  
Vol 23 (33) ◽  
pp. 2821-2833 ◽  
Author(s):  
KENJI SAWAMURA ◽  
IKUO ICHINOSE ◽  
YUKI MORIBE

In this paper we study a new type of lattice gauge model that was proposed in the previous papers for describing unconventional superconductivity (SC). In this model, the Cooper-pair (CP) field is defined on lattice links in order to describe d-wave SC. The CP field can be regarded as a U(1) lattice gauge field dual to the electromagnetic field, and the SC (Higgs) phase transition takes place as a result of the phase coherence of the CP field. Effects of the long-range Coulomb interactions between the CPs and fluctuations of the electromagnetic field are taken into account. We investigate the phase structure of the model and the critical behavior by means of the Monte Carlo simulations. We find that the parameter, which controls the fluxes (vortices) of the CP, strongly influences the phase structure. In three-dimensional case, the model has rich phase structure. In particular, there is a "monopole proliferation" phase transition besides the SC phase transition. Depending on the parameters, this transition exists within the SC phase or takes place simultaneously with the SC transition. This new type of transition is relevant for unconventional SCs with strong spatial three-dimensionality and to be observed by experiments.

1992 ◽  
Vol 07 (18) ◽  
pp. 1601-1607 ◽  
Author(s):  
M. BAIG ◽  
A. TRIAS

We present the first numerical results from a lattice formulation of the Abelian surface gauge model which accounts for three-index fields required in theories based on an antisymmetrical potential. For this purpose we have defined a lattice gauge model in such a way that field variables are assigned to the plaquettes and the interaction is defined through elementary three-dimensional cubes. The phase structure of the Abelian Z(2) case has been determined using Monte-Carlo techniques. Duality relations to spin and gauge models are also studied.


1995 ◽  
Vol 396 ◽  
Author(s):  
L. A. Gea ◽  
L. A. Boatner ◽  
J. D. Budai ◽  
R. A. Zuhr

AbstractIn this work, we report the formation of a new type of active or “smart” surface that is produced by ion implantation and thermal processing. By co-implanting vanadium and oxygen into a single-crystal sapphire substrate and annealing the system under appropriate conditions, it was possible to form buried precipitates of vanadium dioxide that were crystallographically oriented with respect to the host AI2O3 lattice. The implanted VO2 precipitate system undergoes a structural phase transition that is accompanied by large variations in the optical transmission which are comparable to those observed for thin films of VO2 deposited on sapphire. Co-implantation with oxygen was found to be necessary to ensure good optical switching behavior.


Author(s):  
Junjie Quan ◽  
Enze Xu ◽  
Hanwen Zhu ◽  
Yajing Chang ◽  
Yi Zhu ◽  
...  

Prussian blue analogues are potential competitive energy storage materials due to its diverse metal combinations and wide three-dimensional ion channels. Here, we prepared a new high crystalline monoclinic nickel doped...


Sign in / Sign up

Export Citation Format

Share Document