The Higgs Mechanism and the Standard Model of Particle Physics

Author(s):  
Alessandro De Angelis ◽  
Mário João Martins Pimenta
2015 ◽  
Vol 24 (12) ◽  
pp. 1544009 ◽  
Author(s):  
C. S. Unnikrishnan ◽  
George T. Gillies

In this paper, we raise and discuss the fundamental issue whether the interaction-induced inertia in the Higgs mechanism is the same as the charge of gravity or the gravitational mass. True physical mass has to fulfill the dual role of inertia and the gravitational charge, and should respect the weak equivalence principle. This is not yet addressed in the standard model that does not incorporate gravity. Hence, the Higgs scenario still requires a gravitational completion. Some relevant analogies where interaction-induced inertia is not the same as the gravitational charge are mentioned. Probing this line of thought will provide valuable clues and perhaps a remarkable answer to the place and role of gravity in the standard model of particle physics.


2015 ◽  
Vol 25 (1) ◽  
pp. 1 ◽  
Author(s):  
Nguyen Anh Ky ◽  
Nguyen Thi Hong Van

The standard model has postulated the existence of a scalar boson, named the Higgs boson (or the Brout-Englert-Higgs boson, for more complete). This boson plays a central role in a symmetry breaking scheme called the Higgs mechanism making the standard model realistic. However, until recently at least, the 50-year-long-sought Higgs boson had remained the only particle in the standard model not yet discovered experimentally. It is the last but very important missing ingredient of the standard model. Therefore, searching for the Higgs boson is a crucial task and an important mission of particle physics. For this purpose, many theoretical works have been done and dierent experiments have been organized. It may be said in particular that to search for the Higgs boson has been one of the ultimatums of building and running the LHC, the world's largest and most powerful particle accelerator, at CERN, which is a great combination of science and technology. Recently, in the summer of 2012, ATLAS and CMS, the two biggest and general- purpose LHC collaborations, announced the discovery of a new boson with a mass around 125 GeV. Since then, for over two years, ATLAS, CMS and other collaborations have carried out intensive investigations on the newly discovered boson to conrm that this new boson is really the Higgs boson (of the standard model). It is a triumph of science and technology and international cooperation. Here, we will review the main results of these investigations after presenting a brief introduction to the Higgs boson between the theoretical framework of the standard model and Higgs mechanism as well as a theoretical and experimental background of searching for it. This paper may attract interest of not only particle physicists but also a broader audience.


2009 ◽  
Vol 24 (35n37) ◽  
pp. 2802-2802 ◽  
Author(s):  
DMITRY V. SHIRKOV

A retrospective historical overview of the phenomenon of spontaneous symmetry breaking (SSB) in quantum theory, the issue that has been implemented in particle physics in the form of the Higgs mechanism. The main items are: – The Bogoliubov's microscopical theory of superfluidity (1946); – The BCS-Bogoliubov theory of superconductivity (1957); – Superconductivity as a superfluidity of Cooper pairs (Bogoliubov - 1958); – Transfer of the SSB into the QFT models (early 60s); – The Higgs model triumph in the electro-weak theory (early 80s). The role of the Higgs mechanism and its status in the current Standard Model is also touched upon. Note from Publisher: This article contains the abstract only.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Azadeh Maleknejad

Abstract Upon embedding the axion-inflation in the minimal left-right symmetric gauge extension of the SM with gauge group SU(2)L × SU(2)R × U(1)B−L, [1] proposed a new particle physics model for inflation. In this work, we present a more detailed analysis. As a compelling consequence, this setup provides a new mechanism for simultaneous baryogenesis and right-handed neutrino creation by the chiral anomaly of WR in inflation. The lightest right-handed neutrino is the dark matter candidate. This setup has two unknown fundamental scales, i.e., the scale of inflation and left-right symmetry breaking SU(2)R × U(1)B−L→ U(1)Y. Sufficient matter creation demands the left-right symmetry breaking scale happens shortly after the end of inflation. Interestingly, it prefers left-right symmetry breaking scales above 1010 GeV, which is in the range suggested by the non-supersymmetric SO(10) Grand Unified Theory with an intermediate left-right symmetry scale. Although WR gauge field generates equal amounts of right-handed baryons and leptons in inflation, i.e. B − L = 0, in the Standard Model sub-sector B − LSM ≠ 0. A key aspect of this setup is that SU(2)R sphalerons are never in equilibrium, and the primordial B − LSM is conserved by the Standard Model interactions. This setup yields a deep connection between CP violation in physics of inflation and matter creation (visible and dark); hence it can naturally explain the observed coincidences among cosmological parameters, i.e., ηB ≃ 0.3Pζ and ΩDM ≃ 5ΩB. The new mechanism does not rely on the largeness of the unconstrained CP-violating phases in the neutrino sector nor fine-tuned masses for the heaviest right-handed neutrinos. The SU(2)R-axion inflation comes with a cosmological smoking gun; chiral, non-Gaussian, and blue-tilted gravitational wave background, which can be probed by future CMB missions and laser interferometer detectors.


2002 ◽  
Vol 3 (9) ◽  
pp. 1097-1106 ◽  
Author(s):  
Fawzi Boudjema ◽  
Dieter Zeppenfeld

Sign in / Sign up

Export Citation Format

Share Document