higgs particle
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 10)

H-INDEX

17
(FIVE YEARS 1)

Particles ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 12-20
Author(s):  
R. K. Nesbet

The postulate of universal local Weyl scaling (conformal) symmetry modifies both general relativity and the Higgs scalar field model. The conformal Higgs model (CHM) acquires a cosmological effect that fits the observed accelerating Hubble expansion for redshifts z≤1 (7.33 Gyr) accurately with only one free constant parameter. Conformal gravity (CG) has recently been fitted to anomalous rotation data for 138 galaxies. Conformal theory explains dark energy and does not require dark matter, providing a viable alternative to the standard ΛCDM paradigm. The theory precludes a massive Higgs particle but validates a composite gauge field W2 with mass 125 GeV.


Metaphysics ◽  
2021 ◽  
pp. 36-46
Author(s):  
C. Rovelli ◽  
I. A Rybakova

Contrary to claims about the irrelevance of philosophy for science, I argue that philosophy has had, and still has, far more influence on physics than is commonly assumed. I maintain that the current anti-philosophical ideology has had damaging effects on the fertility of science. I also suggest that recent important empirical results, such as the detection of the Higgs particle and gravitational waves, and the failure to detect supersymmetry where many expected to find it, question the validity of certain philosophical assumptions common among theoretical physicists, inviting us to engage in a clearer philosophical reflection on scientific method.


Author(s):  
Jean Zinn-Justin

The Standard Model (SM) 2020 of weak, electromagnetic and strong interactions, based on gauge symmetry and spontaneous symmetry breaking, describes all known fundamental interactions at the microscopic scale except gravity and, perhaps, interactions with dark matter. The SM model has been tested systematically in collider experiments, and in the case of strong interactions (quantum chromodynamics) also with numerical simulations. With the discovery in 2012 of the Higgs particle at the Large Hadron Collider (LHC) at the European Council for Nuclear Research (CERN), all particles of the SM have been identified, and most parameters have been measured. Still, the Higgs particle remains the most mysterious particle of the SM, since it is responsible for all the parameters of the SM except gauge couplings and since it leads to the fine-tuning problem. The discovery of its origin, and the precise study of its properties should be, in the future, one of the most important field of research in particle physics. Since we know now that the neutrinos have masses, the simplest extension of the SM implies Dirac neutrinos. With such a minimal modification, consistent so far (2020) with experimental data, the lepton and quark sectors have analogous structures: the lepton sector involves a mixing matrix, like the quark sector (three angles have been determined, the fourth charge conjugation parity (CP) violating angle is still unknown).


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 674
Author(s):  
Hitoshi Yamamoto

The discovery of Higgs particle has ushered in a new era of particle physics. Even though the list of members of the standard theory of particle physics is now complete, the shortcomings of the theory became ever more acute. It is generally considered that the best solution to the problems is an electron–positron collider that can study Higgs particle with high precision and high sensitivity; namely, a Higgs factory. Among a few candidates for Higgs factory, the International Linear Collider (ILC) is currently the most advanced in its program. In this article, we review the physics and the project status of the ILC including its energy expandability.


2021 ◽  
Vol 139 (3) ◽  
pp. 222-225
Author(s):  
S. Pokorski
Keyword(s):  

2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Paweł Duch ◽  
Michael Dütsch ◽  
José M. Gracia-Bondía

AbstractWe revisit a nearly 10-year old controversy on the diphoton decay of the Higgs particle. To a large extent, the controversy turned around the respective merits of the regularization techniques employed. The novel aspect of our approach is that no regularization techniques are brought to bear: we work within the Bogoliubov–Epstein–Glaser scheme of renormalization by extension of distributions. Solving the problem actually required an expansion of this method’s toolkit, furnished in the paper.


2020 ◽  
pp. 1-3
Author(s):  
Housam H Safadi ◽  

The Standard Model of particle physics is thought to be the best map that describes our life. For this reason, it could embed dark matter and reason gravity. In this exploration, I am looking at Standard Model through a new approach different from merely classifying particles as fermions and bosons. I will search in them for the concept and role of massiveness. Specifying photons and gluons as the unique bosons declared in Standard Model, I go looking for revealing the secrets of Higgs particle, Z and W-, which should not be visible matter bosons


Author(s):  
Guido Altarelli ◽  
Stefano Forte

AbstractIn this chapter, we summarize the structure of the standard EW theory and specify the couplings of the intermediate vector bosons W±, Z and of the Higgs particle with the fermions and among themselves, as dictated by the gauge symmetry plus the observed matter content and the requirement of renormalizability


2019 ◽  
Vol 65 (5 Sept-Oct) ◽  
pp. 419 ◽  
Author(s):  
L. Díaz Cruz

We present a review of Higgs physics in the SM and beyond, including the tests of the Higgs boson properties that have been performed at LHC and have permitted to delineate its profile. After presenting the essential features of the BEH mechanism, and its implementation in the SM, we discuss how the Higgs mass limits developed over the years. These constraints in turn helped to classify the Higgs phenomenology (decays and production mechanisms), which provided the right direction to search for the Higgs particle, an enterprise that culminated with its discovery at LHC. So far, the constraints on the couplings of the Higgs particle, point towards a SM interpretation. However, the SM has open ends that suggest the need to look for extensions of the model. We discuss in general the connection of the Higgs sector with some new physics (e.g. supersymmetry, flavor and Dark matter), with special focus on a more flavored Higgs sector. Thus is realized in the most general 2HDM, and its textured version, which we study in general, and for its various limits, which contain distinctive flavor-violating signals that could be searched at current and future colliders.


Author(s):  
Jean Zinn-Justin

Chapter 4 describes a few important steps which have led from the discovery of infinities in quantum electrodynamics in the calculation of Feynman diagrams (ultraviolet divergences (UV divergences)) to the concept of renormalization and renormalization groups (RG). The constructions of quantum (or statistical) field theories (QFTs) and the deeply related RG have been some of the major theoretical achievements in physics of the last century. RG today plays an essential role in the understanding of the properties of QFT and of continuous macroscopic phase transitions. The existence of RG fixed points makes it possible to understand universality when there is no scale decoupling. In particle physics, it leads to the notion of effective field theory and the fine tuning problem in the Higgs particle sector.


Sign in / Sign up

Export Citation Format

Share Document